【训练营】DateWhale——动手学大模型应用开发(更新中)
文章目录
- 写在前面
- 大模型简介
- LLM简介
- RAG简介
- LangChain开发框架
- 开发LLM应用的整体流程
写在前面
大模型时代从GPT爆发开始到现在已有一年多了,深度学习发展之快无法想象,一味感叹技术发展速度超越个人学习速度是没用的,倒不如花点时间参加一些活动,比如思考大模型时代下如何训练小模型呢?
大模型简介
LLM简介

毫无例外,openai的GPT系列是我们值得了解的一个重要模型,不过很可惜其并未开源,现在我们常用的GPT是3.5-turbo,可以执行各种任务,包括代码编写、数学问题求解、写作建议等。
其余模型见datawhale的开源学习文档。
RAG简介
大型语言模型(LLM)相较于传统的语言模型具有更强大的能力,然而在某些情况下,它们仍可能无法提供准确的答案。为了解决大型语言模型在生成文本时面临的一系列挑战,提高模型的性能和输出质量,研究人员提出了一种新的模型架构:检索增强生成(RAG, Retrieval-Augmented Generation)。该架构巧妙地整合了从庞大知识库中检索到的相关信息,并以此为基础,指导大型语言模型生成更为精准的答案,从而显著提升了回答的准确性与深度。
由于基于网络公开数据大量训练,应用于实际业务场景时基础大模型无法满足我们的实际业务需求,主要有以下几方面原因:
- 知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。
- 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。而这种幻觉问题的区分是比较困难的,因为它要求使用者自身具备相应领域的知识。
- 数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。

RAG的架构如图中所示,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。
通常我们有新数据来的时候,往往我们会将模型在新数据上进行微调,但是RAG确是另外一种思路。RAG和Finetune的对比如下。

LangChain开发框架
LangChain 框架是一个开源工具,充分利用了大型语言模型的强大能力,以便开发各种下游应用。它的目标是为各种大型语言模型应用提供通用接口,从而简化应用程序的开发流程。

LangChain 主要由以下 6 个核心组件组成:
- 模型输入/输出(Model I/O):与语言模型交互的接口
- 数据连接(Data connection):与特定应用程序的数据进行交互的接口
- 链(Chains):将组件组合实现端到端应用。比如后续我们会将搭建检索问答链来完成检索问答。
- 记忆(Memory):用于链的多次运行之间持久化应用程序状态;
- 代理(Agents):扩展模型的推理能力。用于复杂的应用的调用序列;
- 回调(Callbacks):扩展模型的推理能力。用于复杂的应用的调用序列;
开发LLM应用的整体流程
- 传统 AI 开发:需要首先构造训练集、测试集、验证集,通过在训练集上训练模型、在测试集上调优模型、在验证集上最终验证模型效果来实现性能的评估。
- 大模型开发:流程更为灵活和敏捷。从实际业务需求出发构造小批量验证集,设计合理 Prompt 来满足验证集效果。然后,将不断从业务逻辑中收集当下 Prompt 的 Bad Case,并将 Bad Case 加入到验证集中,针对性优化 Prompt,最后实现较好的泛化效果。


相关文章:
【训练营】DateWhale——动手学大模型应用开发(更新中)
文章目录 写在前面大模型简介LLM简介RAG简介LangChain开发框架开发LLM应用的整体流程 写在前面 大模型时代从GPT爆发开始到现在已有一年多了,深度学习发展之快无法想象,一味感叹技术发展速度超越个人学习速度是没用的,倒不如花点时间参加一些…...
【学习笔记十九】EWM Yard Management概述及后台配置
一、EWM Yard堆场管理业务概述 1.Yard Management基本概念 YARD管理针对的是库房以外的区域,可以理解为入大门开始到库门之前的这部分的区域 堆场结构 像在仓库中一样,将相应仓位映射为堆场仓位,可将其分组到堆场分区。场地中可能具有以下结…...
【环境搭建】(五)Ubuntu22.04安装cuda_11.8.0+cudnn_8.6.0
一个愿意伫立在巨人肩膀上的农民...... 设备配置: 一、安装GCC 安装cuda之前,首先应该安装GCC,安装cuda需要用到GCC,否则报错。可以先使用下方指令在终端查看是否已经安装GCC。 gcc --version 如果终端打印如下则说明已经安装…...
【UE5.1】使用MySQL and MariaDB Integration插件——(3)表格形式显示数据
在上一篇(【UE5.1】使用MySQL and MariaDB Integration插件——(2)查询)基础上继续实现以表格形式显示查询到的数据的功能 效果 步骤 1. 在“WBP_Query”中将多行文本框替换未网格面板控件,该控件可以用表格形式布局…...
JVM复习
冯诺依曼模型与计算机处理数据过程相关联: 冯诺依曼模型: 输入/输出设备存储器输出设备运算器控制器处理过程: 提取阶段:输入设备传入原始数据,存储到存储器解码阶段:由CPU的指令集架构ISA将数值解…...
63、ARM/STM32中IIC相关学习20240417
完成温湿度传感器数据采集实验。 【思路:1.通过IIC通信原理,理解其通信过程,通过调用封装的IIC函数达成主机和从机之间:起始信号、终止信号、读、写数据的操作; 2.了解温湿度传感器控制芯片SI7006的工作原理&#…...
离岸人民币与人民币国际化
参考 什么是离岸人民币?它有什么用? - 知乎 “人民币就是人民币,为什么要在它前面加上离岸二字?” “既然有离岸人民币,是否有在岸人民币?” 今天我们就简单了解一下什么是离岸人民币。 离岸/在岸人民币…...
Linux平台上部署和运行Ollama的全面指南
Ollama的安装与配置 Ollama提供了一种简单的安装方法,只需一行命令即可完成安装,但是对于想要更深入了解和自定义安装的用户,我们也提供了手动安装的步骤。 快速安装 Ollama的安装极为简单,只需在终端中执行以下命令࿱…...
Web---robots协议详解
在Web中,robots协议(也称为robots.txt)是一种文本文件,用于向搜索引擎机器人(通常称为爬虫)提供指导,以指示它们哪些页面可以抓取,哪些页面应该忽略。robots.txt文件位于网站的根目录…...
华为海思校园招聘-芯片-数字 IC 方向 题目分享——第四套
华为海思校园招聘-芯片-数字 IC 方向 题目分享——第四套 (共9套,有答案和解析,答案非官方,仅供参考)(共九套,每套四十个选择题) 部分题目分享,完整版获取(WX:didadida…...
clipper一些数据结构(入门初识(一))
clipper一些数据结构(一) Clipper库是一个用于执行多边形裁剪(clipping)和偏移(offsetting)操作的开源C库。在Clipper库中,点和多边形(polygon)是基本的数据结构。Clipp…...
读《SQL基础教程 第二版 上》的一些总结
1. 数据库语言 DDL: Data Definition Language,数据定义语言(库、表的操作) DML: Data Manipulation Language, 数据操控语言(对表中数据的增删改) DQL: Data Query Language,数据库查询语言…...
EDI是什么:EDI系统功能介绍
EDI全称Electronic Data Interchange,中文名称是电子数据交换,也被称为“无纸化贸易”。EDI实现企业间(B2B)自动化通信,帮助贸易伙伴和组织完成更多的工作、加快物流时间并消除人为错误。 目前国内企业实现EDI通信大多…...
64B/66B GT Transceiver 配置
一、前言 前一篇文章已经讲述了64B/66B的编码原理,此篇文章来配置一下7系列GT的64B/66B编码。并讲述所对应的例子工程的架构,以及部分代码的含义。 二、IP核配置 1、打开7 Series FPGAs Transceiver Wizards,选择将共享逻辑放置在example …...
ES6: promise对象与回调地狱
ES6: promise对象与回调地狱 一、回调地狱二、Promise概述三、Promise的组成四、用函数封装Promise读取文件操作 一、回调地狱 在js中大量使用回调函数进行异步操作,而异步操作什么时候返回结果是不可控的,所以希望一段程序按我们制定的顺序执…...
Qt事件处理机制2-事件函数的传播
所有继承自QObject的类都有event函数,该函数用来处理自身的事件,函数定义如下: virtual bool QObject::event(QEvent *e);Qt帮助文档: This virtual function receives events to an object and should return true i…...
【PDF.js】PDF文件预览
【PDF.js】PDF文件预览 一、PDF.js二、PDF.js 下载1、下载PDF.js2、在项目中引入3、屏蔽跨域错误 三、项目中使用四、说明五、实现效果 使用PDFJS实现pdf文件的预览,支持预览指定页、关键词搜索、缩略图、页面尺寸调整等等。 一、PDF.js 官方地址 文档地址 二、PD…...
从建表语句带你学习doris_表索引
1、doris建表概述 1.1、doris建表模板 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [DATABASE.]table_name (column_definition1[,column_deinition2,......][,index_definition1,[,index_definition2,]] ) [ENGINE [olap|mysql|broker|hive]] [key_desc] [COMMENT "tabl…...
Linux CentOS 安装 MySQL 服务教程
Linux CentOS 安装 MySQL 服务教程 1. 查看系统和GNU C库(glibc)版本信息 1.1 查询机器 glibc 版本信息 glibc,全名GNU C Library,是大多数Linux发行版中使用的C库,为系统和应用程序提供核心的API接口。在Linux系统中,特别是在…...
MSSQL 命令行操作说明 sql server 2022 命令行下进行配置管理
说明:本文的内容是因为我在导入Access2019的 *.accdb 格式的数据时,总是出错的背景下,不得已搜索和整理了一下,如何用命令行进行sql server 数据库和用户管理的方法,作为从Access2019 直接导出数据到sql server 数据库…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...
