Python爬取猫眼电影票房 + 数据可视化
目录
- 主角查看与分析 爬取
- 可视化分析
- 猫眼电影上座率前10分析
- 猫眼电影票房场均人次前10分析
- 猫眼电影票票房占比分析
主角查看与分析 爬取
对猫眼电影票房进行爬取,首先我们打开猫眼

接着我们想要进行数据抓包,就要看网站的具体内容,通过按F12,我们可以看到详细信息。

通过两个对比,我们不难发现User-Agent和 signKey数据是变化的(平台使用了数据加密)

所以我们需要对User-Agent与signKey分别进行解密。
通过造一个content字符串,包含请求方法、时间戳、User-Agent、index等信息,并对其进行MD5加密得到sign。最后将这些参数放入params字典中,准备发送请求。
def getData():url = 'https://piaofang.maoyan.com/dashboard-ajax/movie'useragents = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.183'headers = {'User-Agent':useragents,'Referer':'https://piaofang.maoyan.com/dashboard/movie'}useragents = str(base64.b64encode(useragents.encode('utf-8')),'utf-8')index = str(round(random.random() * 1000))times = str(math.ceil(time.time() * 1000))content = "method=GET&timeStamp={}&User-Agent={}&index={}&channelId=40009&sVersion=2&key=A013F70DB97834C0A5492378BD76C53A".format(times,useragents,index)md5 = hashlib.md5()md5.update(content.encode('utf-8'))sign = md5.hexdigest()params = {'orderType': '0','uuid': '17d79b87a00c8-015087c7514df4-5919145b-144000-17d79b87a00c8',# 时间戳'timeStamp': times,# base64加密'User-Agent': useragents,# 随机数 * 1000取整'index': index,'channelId': '40009','sVersion': '2',# md5加密'signKey': sign}
接着我们就可以对于猫眼电影票房数据进行爬取了,比如上座率、场均人次、票房占比、电影名称、上映时间、综合票房、排片场次和排片占比等。
resps = requests.get(url = url , headers = headers, params = params).json()# print(resps)# 上座率数据缺省值这么使用数据data_avgSeatView = jsonpath.jsonpath(resps, '$..avgSeatView')# print(data_avgSeatView)# 场均人次data_avgShowView=jsonpath.jsonpath(resps,'$..avgShowView')# 票房占比data_boxRate=jsonpath.jsonpath(resps,'$..boxRate')# 电影名称data_name=jsonpath.jsonpath(resps,'$..movieName')# 上映时间data_time=jsonpath.jsonpath(resps,'$..releaseInfo')# 综合票房data_sumBoxDesc=jsonpath.jsonpath(resps,'$..sumBoxDesc')# 排片场次data_showCount=jsonpath.jsonpath(resps,'$..showCount')# 排片占比data_showCountRate=jsonpath.jsonpath(resps,'$..showCountRate')data={'电影名称':data_name,'上映时间':data_time,'上座率':data_avgSeatView,'场均人次':data_avgShowView,'票房占比':data_boxRate,'综合票房':data_sumBoxDesc,'排片场次':data_showCount,'排片占比':data_showCountRate}df = pd.DataFrame(pd.DataFrame.from_dict(data, orient='index').values.T, columns=list(data.keys()))print(df)df.to_csv("猫眼电影1.csv",index=False,encoding='utf-8')
通过DataFrame输出到控制台我们可以看到爬取成功。

可视化分析
import pandas as pd
data=pd.read_csv("猫眼电影1.csv")

数据缺省值处理
# 去除空值
data.dropna(inplace=True)
data

猫眼电影上座率前10分析
data_sorted = data.sort_values(by='上座率', ascending=False)
data_top10=data_sorted.head(10)
data_top10

data_top10['电影名称'].tolist()

percentage=data_top10['上座率'].tolist()
data_shangan=[percentage.replace("%", "") for percentage in percentage]
data_shangan

from pyecharts.charts import Bar,Line,Map,Page,Pie
from pyecharts import options as opts
from pyecharts.globals import SymbolType
from pyecharts.charts import Bar
# from pyecharts.charts import opts
#条形图
#bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1 = Bar()
bar1.add_xaxis(data_top10['电影名称'].tolist())
bar1.add_yaxis('', data_shangan)
bar1.set_global_opts(title_opts=opts.TitleOpts(title='猫眼电影上座率前10分析'),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),visualmap_opts=opts.VisualMapOpts(max_=28669)) bar1.render_notebook()

猫眼电影票房场均人次前10分析
data_sum = data.groupby('电影名称')['场均人次'].sum().sort_values(ascending=False)
data_sum[:10]

bar3 = Bar()
bar3.add_xaxis(data_sum[:10].index.tolist())
bar3.add_yaxis('', data_sum[:10].values.tolist())
bar3.set_global_opts(title_opts=opts.TitleOpts(title='猫眼电影票房场均人次前10分析'),visualmap_opts=opts.VisualMapOpts(max_=900))
bar3.render_notebook()

猫眼电影票票房占比分析
data_pf= data.groupby('电影名称')['票房占比'].sum().sort_values(ascending=False)
data_pfzb=data_pf.tail(24)
data_pfzb.head(10)

data_pftop10 = [list(z) for z in zip(data_pf.index.tolist(), data_pf.values.tolist())]# 绘制饼图
pie1 = Pie()
pie1.add('', data_pftop10, radius=['35%', '60%'])
pie1.set_global_opts(title_opts=opts.TitleOpts(title='猫眼电影票票房占比分析'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie1.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
pie1.render_notebook()

相关文章:
Python爬取猫眼电影票房 + 数据可视化
目录 主角查看与分析 爬取可视化分析猫眼电影上座率前10分析猫眼电影票房场均人次前10分析猫眼电影票票房占比分析 主角查看与分析 爬取 对猫眼电影票房进行爬取,首先我们打开猫眼 接着我们想要进行数据抓包,就要看网站的具体内容,通过按F12…...
Spring Boot深度解析:是什么、为何使用及其优势所在
在Java企业级应用开发的漫长历史中,Spring框架以其卓越的依赖注入和面向切面编程的能力,赢得了广大开发者的青睐。然而,随着技术的不断进步和项目的日益复杂,传统的Spring应用开发流程逐渐显得繁琐和低效。为了解决这一问题&#…...
面向对象——类与对象
文章目录 类与对象构造函数、析构函数get/set方法函数:类内声明、类外定义static 类与对象 #include<iostream> #include<string> using namespace std; /* 类与对象 */ class Person{public:string name;// 固有属性,成员变量 int age;pu…...
Golang的[]interface{}为什么不能接收[]int?
在 Go 中,[]interface{} 和 []int 是两种不同的类型,虽然它们的底层数据结构都是切片,但是它们的元素类型不同。[]interface{} 是一个空接口切片,可以容纳任意类型的元素,而 []int 是一个整数切片,只能容纳…...
重启服务器或重启docker,导致emqx的Dashboard的密码重置为public
最近在项目中突然发现重启服务器,或者重启docker 修改好的emqx的Dashboard的密码重置为public 技术博客 http://idea.coderyj.com/ 1.解决办法就是固定 emqx的节点 # 拉取镜像 docker pull emqx/emqx# 创建目录,进行目录挂载 mkdir -p /docker/emqx/{etc,lib,data,…...
就业班 第三阶段(ansible) 2401--4.16 day2 ansible2 剧本+角色
六、Ansible playbook 简介 playbook 是 ansible 用于配置,部署,和管理被控节点的剧本。 通过 playbook 的详细描述,执行其中的一系列 tasks ,可以让远端主机达到预期的状态。playbook 就像 Ansible 控制器给被控节点列出的的…...
常用的过滤网站扫描网站攻击的路径是那些,比如:/etc/passwd等
网站攻击中经常被尝试的路径主要包括利用漏洞获取敏感文件、执行系统命令或者注入恶意代码的尝试。以下是一些常见的被攻击者尝试访问的路径和文件,这些通常在网络入侵检测系统(IDS)和网络防火墙的过滤规则中被特别关注: 系统文件…...
考研数学|《1800》《660》《880》如何选择和搭配?(附资料分享)
直接说结论:基础不好先做1800、强化之前660,强化可选880/1000题。 首先,传统习题册存在的一个问题是题量较大,但难度波动较大。《汤家凤1800》和《张宇1000》题量庞大,但有些题目难度不够平衡,有些过于简单…...
论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?
iclr 2024 reviewer 评分 6668 1 intro 大型语言模型(LLMs)已显示出在上下文中学习的能力 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出然而,现行的上下文学习(ICL)范式仍存在以下明显…...
C语言 | Leetcode C语言题解之第28题找出字符串中第一个匹配项的下标
题目: 题解: int strStr(char* haystack, char* needle) {int n strlen(haystack), m strlen(needle);if (m 0) {return 0;}int pi[m];pi[0] 0;for (int i 1, j 0; i < m; i) {while (j > 0 && needle[i] ! needle[j]) {j pi[j - …...
「Python大数据」数据采集-某东产品数据评论获取
前言 本文主要介绍通过python实现数据采集、脚本开发、办公自动化。数据内容范围:星级评分是1-3分、获取数据页面是前50页。 友情提示 法律分析:下列三种情况,爬虫有可能违法,严重的甚至构成犯罪: 爬虫程序规避网站经营者设置的反爬虫措施或者破解服务器防抓取措施,非法…...
ORACLE错误提示概述
OceanBase分布式数据库-海量数据 笔笔算数 保存起来方便自己查看错误代码。 ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会话数 ORA-00019: 超出最大会话许可数 ORA-00020: 超出最大进程数 () ORA-00021: 会话附属于其它某些进程…...
2024年4月13日美团春招实习试题【第一题:好子矩阵】-题目+题解+在线评测【模拟】
2024年4月13日美团春招实习试题【第一题:好子矩阵】-题目题解在线评测【模拟】 题目描述:输入描述输出描述样例 解题思路一:模拟解题思路二:思路二解题思路三:直接判断 题目描述: 塔子哥定义一个矩阵是”好矩阵”&…...
ssm057学生公寓管理中心系统的设计与实现+jsp
学生公寓管理中心系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本学生公寓管理中心系统就是在这样的大环境下诞生,其可以帮助管…...
循环神经网络(RNN):概念、挑战与应用
循环神经网络(RNN):概念、挑战与应用 1 引言 1.1 简要回顾 RNN 在深度学习中的位置与重要性 在深度学习的壮丽图景中,循环神经网络(Recurrent Neural Networks,RNN)占据着不可或缺的地位。自从…...
UML 介绍
前言 UML 简介。 文章目录 前言一、简介1、事务2、关系1)依赖2)关联聚合组合 3)泛化4)实现 二、类图三、对象图四、用例图五、交互图1、序列图(顺序图)2、通信图 六、状态图七、活动图八、构件图࿰…...
Pytorch——训练时,冻结网络部分参数的方法
一、原理: 要固定训练网络的哪几层,只需要找到这几层参数(parameter),然后将其 .requires_grad 属性设置为 False 即可。 二、代码: # 根据参数层的 name 来进行冻结 unfreeze_layers ["text_id"] # 用列表 # 设置冻…...
制冷铜管焊接介绍
铜管是制冷装置的重要原材料,它主要有两种用途:①制作换热器。②制作连接管道和管件。常用的焊料类型有铜磷焊料、银铜焊料、铜锌焊料等。在焊接时要根据管道材料的特点,正确的选择焊料及熟练的操作,以确保焊接的质量。 1.1对同类…...
spring06:mybatis-spring(Spring整合MyBatis)
spring06:mybatis-spring(Spring整合MyBatis) 文章目录 spring06:mybatis-spring(Spring整合MyBatis)前言:什么是 MyBatis-Spring?MyBatis-Spring 会帮助你将 MyBatis 代码无缝地整合…...
如何使用自定义Promptbooks优化您的安全工作流程
在当今的数字化时代,安全工作流程的优化变得前所未有的重要。安全团队需要快速、有效地响应安全事件,以保护组织的数据和资产。Microsoft Copilot for Security提供了一种强大的工具——自定义Promptbooks,它可以帮助安全专家通过自动化和定制…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
