当前位置: 首页 > news >正文

Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算

🎯要点

  1. 🎯固体和粒子:计算二态系统、简谐振子和爱因斯坦固体的内能和比热,比较爱因斯坦固体和德拜固体。模拟多个粒子的一维和二维随机游走,在数值上确认方差的线性趋势,模拟多个粒子的梯度下降,模拟双井的梯度下降。
  2. 🎯混合物:🖊建立理想气体及其混合物和多相纯物质的属性模型 。
  3. 🎯计算给定条件下的气体数值:🖊氮给定条件下的焦耳-汤姆逊系数 | 🖊气态氧流等熵效率的比功和出口气体温度 | 🖊液态水流量泵的冷却负荷和轴功率 | 🖊甲烷与十二烷合并流温度 | 🖊制冷剂经饱和蒸气压缩后的出口压力 | 🖊液氨储存罐安全体积 | 🖊氮气流过阀门哪一部分变成液体 | 🖊二氧化碳和氧气合流绝热压缩和等温压缩的压缩功率 | 🖊乙烯经两阀门膨胀后的温度 | 🖊蒸馏塔中塔压下降时泄漏率会如何变化 | 🖊丙烯储存容器加热后初始压力和最终温度 | 🖊氧气流被压缩机压缩后,压缩机功率和氧气出口温度 | 🖊热力循环水经过恒压加热、等熵膨胀、恒压冷凝和等熵压缩后的热效率 | 🖊计算甲烷焦耳-汤姆逊系数 | 🖊氨被压缩后,每摩尔压缩机的负荷和出口温度 | 🖊蒸汽压缩循环模拟。
  4. 🎯Python和C++物理计算热力学 | 🎯Python物理差分方程解​

🍇Python水波纹偏微分方程

有一个不可否认的事实:波一直在我们周围。 无论是通过电磁辐射、空气中传播的声音,还是由一滴水引起的涟漪,波绝对无处不在。 尽管其形式多种多样,但在所有波浪中都适用的一件事是控制它们的严格物理规则。 在数学上,所有这些物理规则都浓缩为一个简单的微分方程之一:波动方程。
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
波动方程告诉我们任何波如何在空间中传播并随时间演化,它为我们提供了函数 u(t, x, y),该函数给出了任意时间内任意点 (x, y) 处的波的高度 t。 本质上,如果你告诉波动方程,你把一个球扔进池塘,它会告诉你球产生的涟漪如何随着时间的推移而发展,并允许你预测由此引起的水的变化。 就像你告诉波动方程你尽可能大声尖叫一样,它会告诉你你创建的声波将如何传播并与环境相互作用。 总而言之,通过求解波动方程,我们将能够轻松模拟我们的纹波。

想象一下,两个人最初紧紧地握着一根绳子(红色),然后一个人快速上下移动手,在绳子上释放出波浪。在波穿过这条绳子后拍一张快照,我们想弄清楚它将如何随着时间的推移继续演化。 为了举例说明,我们假设一根无重力的无摩擦绳索。 为了开始解决这个问题,我们首先定义一些变量。

绳索在位置 x 和时间 t 处的高度将被称为函数 u(t, x) 的值。 考虑到这一点,我们要考虑什么可能会导致绳索随着时间的推移而发生变化。 由于我们确定不存在重力或摩擦力,因此作用在绳子上的唯一力就是张力,我们可以想象,张力在绳子的最小和最大高度处最大。

本质上,这是对凹度的陈述,因为张力在沿着绳索的高弯曲点处达到最高,并且随着远离这些点而减弱。 这里最终可以确定的是,在绳索上的任何给定点,它所承受的张力与其凹度成正比。 由于微积分告诉我们函数的凹性是由其在空间中的二阶导数定义的,因此我们可以将其表述为:
F tension  = k ∂ 2 u ∂ x 2 F_{\text {tension }}=k \frac{\partial^2 u}{\partial x^2} Ftension =kx22u
其中 k 是一个简单的比例常数。 现在我们必须找到一种方法,将力用 u 表示,并将其转化为我们可以解决和使用的东西。 研究牛顿第二定律,它告诉我们 F = ma,允许快速替换,结果为:
m a = k ∂ 2 u ∂ x 2 m a=k \frac{\partial^2 u}{\partial x^2} ma=kx22u
其中 m 是该点的质量,a 是加速度,u 是高度,k 是比例常数。 正如物理学告诉我们的那样,任何处理位置的函数的加速度只是其相对于时间的二阶导数,这意味着我们可以将方程重新定义为:
∂ 2 u ∂ t 2 = k m ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2}=\frac{k}{m} \frac{\partial^2 u}{\partial x^2} t22u=mkx22u
离散化波动方程
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
在代码中,网格域将如下所示:

Lx = 10 
Nx = 80 
Ly = 10 
Ny = 80 x_vec = numpy.linspace(0, Lx, Nx) 
dx = x_vec[2] - x_vec[1] y_vec = numpy.linspace(0, Ly, Ny)
dy = y_vec[2] - y_vec[1] 

dt 可以选择,这就是对我有用的数字,c 保持为 1 以保持方程简单。 dt 越小越好,因为它将导致更准确但更慢的模拟。

dt = .025 
Nt = 4000 
c = 1 
u = numpy.zeros([Nt, len(x), len(y)])

如前所述,我们希望在池的中心出现扰动(中心为 (nx/2, ny/2)),因此 t-dt 和 t 的初始条件如下所示:

u[0, Nx // 2, Ny // 2] = numpy.sin(0) 
u[1, Nx // 2, Ny // 2] = numpy.sin(1/10) 

最后,要解决所有问题,我们要做的就是迭代时间并将所有值代入离散方程,从而得到:

for t in range(1, Nt-1):for x in range(1, Nx-1):for y in range(1, Ny-1):if (t < 100):u[t, Nx // 2, Ny // 2] = numpy.sin(t / 10)u[t+1, x, y] = c**2 * dt**2 * ( ((u[t, x+1, y] - 2*u[t, x, y] + u[t, x-1, y])/(dx**2)) + ((u[t, x, y+1] - 2*u[t, x, y] + u[t, x, y-1])/(dy**2)) ) + 2*u[t, x, y] - u[t-1, x, y]

现在您已经通过求解波动方程正式模拟了水波纹!只需迭代计算值并在代码中为每个步骤及时绘制一个曲面:

fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = numpy.meshgrid(x_vec, y_vec)
for t in range(0, Nt):surf = ax.plot_surface(X, Y, u[t], color='b', shade=True,linewidth=0, antialiased=False)ax.view_init(elev=45)ax.set_zlim(-.0001, 2.4)pyplot.axis('off')pyplot.pause(.0001)pyplot.cla()

参阅一:计算思维

参阅二:亚图跨际

相关文章:

Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算

&#x1f3af;要点 &#x1f3af;固体和粒子&#xff1a;计算二态系统、简谐振子和爱因斯坦固体的内能和比热&#xff0c;比较爱因斯坦固体和德拜固体。模拟多个粒子的一维和二维随机游走&#xff0c;在数值上确认方差的线性趋势&#xff0c;模拟多个粒子的梯度下降&#xff0…...

2024-04-30 区块链-以太坊-相关文档

摘要: 2024-04-30 区块链-以太坊-文档 以太坊-相关文档: https://github.com/ethereum/go-ethereum https://geth.ethereum.org/ https://geth.ethereum.org/docs https://ethereum.org/zh/ 以太坊开发文档 | ethereum.org 以太坊开发文档_w3cschool 以太坊开发文档 基础主题 …...

你用过最好用的AI工具有哪些?

你用过最好用的AI工具有哪些&#xff1f; 人工智能&#xff08;AI&#xff09;工具正在逐渐成为我们日常生活中不可或缺的助手&#xff0c;它们通过提供智能化服务&#xff0c;极大地提升了我们的工作效率和生活质量。以下是一些广泛使用的AI工具和应用&#xff0c;以及它们所…...

Amine-PEG-Amine,956496-54-1在生物成像、生物传感器等领域具有广泛的应用

【试剂详情】 英文名称 Amine-PEG-Amine&#xff0c;NH2-PEG-NH2 中文名称 氨基-聚乙二醇-氨基&#xff0c;氨基PEG氨基&#xff0c; 双端氨基聚乙二醇 CAS号 956496-54-1 外观性状 由分子量决定&#xff0c;液体或者固体 分子量 0.4k&#xff0c;0.6k&#xff0c;1k&…...

为什么深度学习中减小泛化误差称为“正则化(Regularization)”

深度学习的一个重要方面是正则化&#xff08;Regularization&#xff09;&#xff0c;Ian Goodfellow在《Deep Learning 》称正则化&#xff08;Regularization&#xff09;就是减小泛化误差。那么&#xff0c;为什么减小泛化误差称为正则化呢&#xff1f; 首先看正则化——Re…...

【Linux网络编程】2.套接字、网络字节序、IP地址转换函数

目录 网络套接字 网络字节序 网络字节序和主机字节序的转换 IP地址转换函数 inet_pton 参数af 参数src 参数dst 返回值 inet_ntop 参数af 参数src 参数dst 参数size 返回值 网络套接字 socket&#xff0c;一个文件描述符指向一个套接字&#xff0c;该套接字内部…...

代码签名证书的工作原理和申请流程

随着软件分发渠道的多样化和黑客攻击手段的不断升级&#xff0c;确保软件的真实性和完整性变得尤为重要。这正是代码签名证书&#xff08;Code Signing Certificate&#xff09;发挥关键作用的领域。本文将深入探讨代码签名证书的基础概念、工作原理、重要性以及申请和使用流程…...

Python中的yield

文章目录 1. Python中的yield1.1 一个简单的示例1.2 示例的每一步含义 2. yield 和return的区别2.1 一个简单的示例2.2 示例中每一步的含义 3. yield中的send()方法3.1 一个简单的示例3.2 示例中每一步的含义 4. yield中的throw()方法4.1 一个简单的示例4.2 示例中每一步的含义…...

【Linux】基于 Jenkins+shell 实现更新服务所需文件 -->两种方式:ssh/Ansible

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…...

5月4(信息差)

&#x1f384; HDMI ARC国产双精度浮点dsp杜比数码7.1声道解码AC3/dts/AAC环绕声光纤、同轴、USB输入解码板KC33C &#x1f30d; 国铁集团回应高铁票价将上涨 https://finance.eastmoney.com/a/202405043066422773.html ✨ 源代码管理平台GitLab发布人工智能编程助手DuoCha…...

【Spring】1.Spring中IOC与DI全解析

本节将详细介绍Spring框架的两个核心概念&#xff1a;控制反转&#xff08;IOC&#xff09;和依赖注入&#xff08;DI&#xff09;。首先&#xff0c;我们会探讨IOC和DI的定义&#xff0c;实现原理&#xff0c;优点和缺点。然后&#xff0c;我们将介绍如何在Spring中使用IOC和D…...

vue2迁移到vue3,v-model的调整

项目从vue2迁移到vue3&#xff0c;v-model不能再使用了&#xff0c;需要如何调整&#xff1f; 下面只提示变化最小的迁移&#xff0c;不赘述vue2和vue3中的常规写法。 vue2迁移到vue3&#xff0c;往往不想去调整之前的代码&#xff0c;以下就使用改动较小的方案进行调整。 I…...

【C语言】解决不同场景字符串问题:巧妙运用字符串函数

&#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言笔记专栏&#xff1a;C语言笔记 &#x1f308;C笔记专栏&#xff1a; C笔记 &#x1f308;喜欢的诗句:无人扶我青云志 我自踏雪至山巅 文章目录 一、字符函数1.1 字符分类函数1.1.1 islower1.1.2 isupper 1.…...

android 如何显示网络地址对应的图片

1.android 如何显示网络地址对应的图片 在Android中显示网络地址对应的图片&#xff0c;通常有多种方法可以实现。以下是几种常见的方法&#xff1a; 1. 使用ImageView和Picasso库 Picasso是一个强大的图片加载库&#xff0c;它可以方便地加载网络图片并显示到ImageView中。 …...

【项目学习01_2024.05.02_Day04】

学习笔记 4 课程分类查询4.1需求分析4.2 接口定义4.3 接口开发4.3.1 树型表查询4.3.2 开发Mapper 4 课程分类查询 4.1需求分析 有课程分类的需求 course_category课程分类表的结构 这张表是一个树型结构&#xff0c;通过父结点id将各元素组成一个树。 利用mybatis-plus-gen…...

Android SQLite中的UNIQUE constraint failed错误

报错信息&#xff1a; UNIQUE constraint failed SQLite中的UNIQUE constraint failed错误&#xff0c;表明尝试插入或更新数据库时出现了违反唯一性约束的情况。唯一性约束确保在特定列或列集合中的值在表中是唯一的&#xff0c;即不能有重复的值。当你尝试插入或更新已存在于…...

嘴尚绝卤味:传承经典,缔造美食新风尚

卤味&#xff0c;作为中国传统美食的代表之一&#xff0c;历经千年的传承与发展&#xff0c;早已成为无数食客餐桌上的宠儿。而在这个美食盛行的时代&#xff0c;嘴尚绝卤味凭借其独特的口感和精湛的工艺&#xff0c;成为卤味市场中的佼佼者&#xff0c;引领着卤味文化的新潮流…...

Docker 入门与实践:从零开始构建容器化应用环境

Docker 一、docker常用命令docker ps 格式化输出Linux设置命令别名 二、数据卷相关命令挂载到默认目录&#xff08;/var/lib/docker&#xff09;挂载到本地目录 三、自定义镜像Dockerfile构建镜像的命令 四、网络自定义网络 五、DockerCompose相关命令 一、docker常用命令 dock…...

C# 用户控件UserControl事件解绑资源释放

用户控件继承子 UserControl 。 现在有个业务需求在UserControl 所在的窗体关闭时解除事件HMouseDown绑定。 因没有相关的Close事件。后来本人想了一个办法在 ROICtlDesigner类的 Dispose 方法中执行相关的释放代码 比如解除事件绑定 释放资源 public partial class ROICt…...

QT-QTCreator环境配置

准备工作&#xff1a; 下载QT: 链接&#xff1a;https://pan.baidu.com/s/1prJcsC4DGqhKiXvLuPQFVA?pwd60b3 提取码&#xff1a;60b3下载WindowsKits&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1QNiS3HpbH5M5kXx5AhkqnQ?pwde2h8 提取码&#xff1a;e2h8安装的…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...