当前位置: 首页 > news >正文

动态规划算法:路径问题

例题一

解法(动态规划):
算法思路:
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1][j]+dp[i][j-1]。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候
「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。

例题二

解法(动态规划):
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之 前的⼀⼩步,有两种情况:
i. [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到[i, j] 位置;
ii. [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
但是, [i - 1, j] [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置 的,也就是说,此时的⽅法数应该是 0。 由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题三

解法(动态规划):
算法思路:
1. 状态表⽰: 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最⼤价值。
2. 状态转移⽅程:
对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:
i. 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i - 1][j] + grid[i][j]
ii. 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i][j - 1] + grid[i][j]
我们要的是最⼤值,因此状态转移⽅程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有的值都为 0 即可。
4. 填表顺序:
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」。
5. 返回值:
根据「状态表⽰」,我们应该返回 dp[m][n] 的值。

例题四

解法(动态规划):
算法思路:
关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。 ⽐较难的地⽅可能就是对于「边界条件」的处理。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
ii. 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式
这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。
2. 状态转移⽅程:
对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
i. 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
ii. 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
iii. 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。
于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为 0 即可。
4. 填表顺序:
根据「状态表⽰」,填表的顺序是「从上往下」。
5. 返回值:
注意这⾥不是返回 dp[m][n] 的值!
题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「 dp 表中最后⼀⾏的最⼩值」。

例题五

解法(动态规划):
算法思路:
像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到
「不同路径」⼀类的题⾥⾯。
1. 状态表⽰:
对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最⼩路径和,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
3. 初始化:可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题六

解法(动态规划):
算法思路:
1. 状态表⽰:
这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影
响。也就是从上往下的状态转移不能很好地解决问题。
这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为:dp[i][j] 表⽰:从[i, j]位置出发,到达终点时所需的最低初始健康点数。
2.
状态转移⽅程:
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择
(为了⽅便理解,设 dp[i][j] 的最终答案是 x ):
i. ⾛到右边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]
ii. ⾛到下边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j]
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j]如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j]与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
5. 返回值:
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。

相关文章:

动态规划算法:路径问题

例题一 解法(动态规划): 算法思路: 1. 状态表⽰: 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式: i. 从 [i, j] 位置出发,巴拉巴拉; ii. 从起始位置出…...

盘一盘接口测试的那些痛点,你现在会解决了吗

前言 说到接口测试,想必大家一定不会陌生。接口测试就是测试系统组件间,接口对接是否顺畅的一种测试。包括测试数据能否交换、能否传递、能否正常控制管理过程,以及系统间的相互逻辑依赖关系,等等。 由于接口测试主要是检测系统…...

基于alpha shapes的边缘点提取(matlab)

1、原理介绍 由Edelsbrunner H提出的alpha shapes算法是一种简单、有效的快速提取边界点算法。其克服了点云边界点形状影响的缺点,可快速准确提取边界点。如下图所示,对于任意形状的平面点云,若一个半径为a的圆,绕其进行滚动&…...

C#三人飞行棋

C#三人飞行棋 #region 1控制台设置int w 50, h 30; ConsoleInit(w, h); #endregion#region 2 场景选择实例//声明一个表示场景标识的变量 E_SceneType nowSceneType new E_SceneType(); while (true) {switch (nowSceneType){case E_SceneType.Begion://开始场景逻辑Consol…...

Notes for the missing semester. Useful and basic knowledge about Linux.

The Shell Contents The first course is to introduce some simple commands. I’ll list some commands that I’m not familiar with: # --silent means dont give log info, # --head means we only want the http head. curl --head --silent bing.com.cn# cut --deli…...

【信息系统项目管理师知识点速记】资源管理基础

项目团队 执行项目工作,实现项目目标的一组人员。成员具备不同技能,可全职或兼职,随项目进展而变化。参与项目规划和决策,贡献专业技能,增强对项目的责任感。项目管理团队 直接参与项目管理活动的成员,负责项目管理和领导。负责项目各阶段的启动、规划、执行、监督、控制…...

Android性能优化面试题汇总

Android的性能优化涉及多个方面,如启动优化、稳定性优化、内存优化、网络优化、电量优化、安全优化等方面。 一、稳定性优化 1.1 你们做了哪些稳定性方面的优化 随着项目的逐渐成熟,用户基数逐渐增多,DAU持续升高,我们遇到了很多稳定性方面的问题,对于我们技术同学遇到…...

Ansible 自动化运维工具 - 了解和模块应用

目录 一. Ansible 的相关知识 1.1 Ansible 工具的简介 1.2 Ansible的四大组件 1.3 运维自动化工具 1.4 Ansible 和其它自动化运维工具对比 1.5 Ansible 的优缺点 二. Ansible 环境安装部署 2.1 管理端安装 ansible 2.2 配置主机清单 三. ansible 命令行模块 3.1 comm…...

AI神助攻!小白也能制作自动重命名工具~

我们平时从网上下载一些文件,文件名很多都是一大串字母和数字,不打开看看,根本不知道里面是什么内容。 我想能不能做个工具,把我们一个文件夹下面的所有word、excel、ppt、pdf文件重命名为文件内容的第一行。 我们有些朋友可能不会…...

(读书笔记-大模型) LLM Powered Autonomous Agents

目录 智能体系统的概念 规划组件 记忆组件 工具组件 案例研究 智能体系统的概念 在大语言模型(LLM)赋能的自主智能体系统中,LLM 充当了智能体的大脑,其三个关键组件分别如下: 首先是规划,它又分为以下…...

超分辨率重建——BSRN网络训练自己数据集并推理测试(详细图文教程)

目录 一、BSRN网络总结二、源码包准备三、环境准备3.1 报错KeyError: "No object named BSRN found in arch registry!"3.2 安装basicsr源码包3.3 参考环境 四、数据集准备五、训练5.1 配置文件参数修改5.2 启动训练5.2.1 命令方式训练5.2.2 配置Configuration方式训…...

C语言实现贪吃蛇

目录 前言一 . 游戏背景1. 背景介绍2. 项目目标3. 技术要点 二 . 效果演示三 . 游戏的设计与分析1. 核心逻辑2. 设计与分析游戏开始Gamestart()函数游戏运行Gamerun()函数游戏结束Gameend()函数 四 . 参考代码五 . 总结 前言 本文旨在使用C语言和基础数据结构链表来实现贪吃蛇…...

高可用系列四:loadbalancer 负载均衡

负载均衡可以单独使用,也常常与注册中心结合起来使用,其需要解决的问题是流量分发,这是就需要定义分发策略,当然也包括了故障切换的能力。 故障切换 故障切换是负载均衡的基本能力,和注册中心结合时比较简单&#xf…...

Ruby递归目录文件的又一种方法

经常派得上用场,记录一下。 递归文件做一些操作 #encoding:utf-8require pathnamedef recursive_enum_files(from_path)from_path Pathname.new(from_path)raise ArgumentError,must start at a directory. unless from_path.directory?from_path.enum_for(:fin…...

【爬虫】爬取A股数据写入数据库(一)

1. 对东方财富官网的分析 步骤: 通过刷新网页,点击等操作,我们发现https://datacenter-web.eastmoney.com/api/data/v1/get?请求后面带着一些参数即可以获取到相应数据。我们使用python来模拟这个请求即可。 我们以如下选择的页面为切入点…...

1-38 流资源类结构

一 简介 1. Java中所说的流资源--IO流 2.为什么学习留资源? --要操作文件中的数据 将数据写入指定的文件 将数据从指定的文件读取 3.分类 -- 四大基流 , 八大子流 (重点) 按照流向分 : 输入流 和输出流 按照操作数据资源的类型划分 字符流 (重点) Reader -- 字符…...

nginx的前世今生(二)

书接上回: 上回书说到,nginx的前世今生,这回我们继续说 3.缓冲秘籍,洪流控水 Nginx的缓冲区是其处理数据传输和提高性能的关键设计之一,主要用于暂存和管理进出的数据流,以应对不同组件间速度不匹配的问题…...

浏览器跨域详解

一、什么是跨域 浏览器跨域是指当一个Web应用程序试图访问另一个协议、主机或端口不同的资源时,所发生的情况。这主要是由于浏览器的同源策略造成的,它是为了网站的安全而设置的安全限制,防止一个网站恶意访问另一个网站的资源。当然这是比较…...

华为5700配置

恢复出厂设置,清空配置 1、更改名字 system-view sysname tp-10-50-01-04 2、配置管理接口 int vlan 1 ip add 10.50.1.4 255.255.254.0 quit 2、链路汇聚 interface eth-trunk 1 mode lacp quit 3、绑定端口 interface eth-trunk 1 trunkport gigabitethernet …...

使用Axios从前端上传文件并且下载后端返回的文件

前端代码: function uploadAndDownload(){showLoading();const fileInput document.querySelector(#uploadFile);const file fileInput.files[0];const formData new FormData()formData.append(file, file)return new Promise((resolve, reject) > {axios({…...

open 函数到底做了什么

使用设备之前我们通常都需要调用 open 函数,这个函数一般用于设备专有数据的初始化,申请相关资源及进行设备的初始化等工作,对于简单的设备而言,open 函数可以不做具体的工作,你在应用层通过系统调用 open 打开设备…...

ue引擎游戏开发笔记(32)——为游戏添加新武器装备

1.需求分析: 游戏中角色不会只有一种武器,不同武器需要不同模型,甚至可能需要角色持握武器的不同位置,因此需要添加专门的武器类,方便武器后续更新,建立一个武器类。 2.操作实现: 1.在ue5中新建…...

【个人博客搭建】(17)使用FluentValidation 参数校验

FluentValidation 是一个用于 .NET 的开源验证库,它提供了一种流畅的接口和强类型验证规则,使得验证逻辑表达得更加清晰和简洁。(Apache-2.0) FluentValidation 的主要作用包括: 提高代码可读性:通过使用 F…...

数据结构===散列表

文章目录 概要散列思想散列函数散列冲突开放寻址法装载因子 链表法 代码Java小结 概要 散列表是一种很有趣的数据结构。 散列表是一个很有用的数据结构。它是数组演练而来的,又是一个基于数组的扩展的数据结构。接下来看看。 散列思想 散列表用的是数组支持按照下…...

10G MAC层设计系列-(2)MAC RX模块

一、概述 MAC RX模块的需要进行解码、对齐、CRC校验。 因为在空闲的时候10G PCS/PMA会一直向外吐空闲符(x07)所以需要根据开始符、结束符将有效数据从码流中截取,也就是解码。 因为开始字符的所在位置有两种形式,而结束字符的位…...

解码Starknet Verifier:深入逆向工程之旅

1. 引言 Sandstorm为: 能提交独立proof给StarkWare的Ethereum Verifier,的首个开源的STARK prover。 开源代码见: https://github.com/andrewmilson/sandstorm(Rust) L2Beat 提供了以太坊上Starknet的合约架构图&…...

【C++语言】类和对象--默认成员函数 (中)

文章目录 前言类的六个默认成员函数:1. 构造函数概念特性做了什么?易错注意:显式定义和默认构造函数 2. 析构函数概念特征做了什么?注意事项: 3.拷贝构造函数概念特征做了什么?注意事项: 4.赋值运算符重载…...

前端递归常见应用

概览 在 JavaScript 中,递归是一种编程技术,指的是函数直接或间接调用自身的过程。 递归通常用于解决可以分解为相同子问题的问题。通过不断地将问题分解成更小的、相似的子问题,直到达到某种基本情况(不再需要进一步递归的简单情…...

AI工具如何改变我们的工作与生活

AI工具在当今社会中扮演着越来越重要的角色,它们已经开始改变着我们的工作方式和生活方式。在接下来的2000字篇幅中,我将详细探讨AI工具如何影响我们的工作和生活。 AI工具在工作中的影响: 自动化和智能化生产流程: AI工具可以通…...

深入了解C/C++的内存区域划分

🔥个人主页:北辰水墨 🔥专栏:C学习仓 本节我们来讲解C/C的内存区域划分,文末会附加一道题目来检验成果(有参考答案) 一、大体有哪些区域?分别存放什么变量开辟的空间? …...