当前位置: 首页 > news >正文

HTTP 多个版本

了解一下各个版本的HTTP。

上个世纪90年代初期,蒂姆·伯纳斯-李(Tim Berners-Lee)及其 CERN的团队共同努力,制定了互联网的基础,定义了互联网的四个构建模块:

  • 超文本文档格式(HTML)

  • 数据传输协议(HTTP)

  • 用于查看超文本的网络浏览器(第一个浏览器,WorldWideWeb)

  • 用于传输数据的服务器(httpd的早期版本)

HTTP重用了现有的 TCP/IP 协议来进行数据传输,其中 HTTP 消息字节位于应用层,如下图中的浅蓝色所示。

图片

1、HTTP/0.9

这是第一个 HTTP草案。它只有一个 GET方法,也不支持头部或状态代码;唯一可用的数据格式是 HTML。就像 HTTP/1.0和 HTTP/1.1一样,HTTP消息以 ASCII文本结构呈现。

HTTP/0.9请求的示例:

GET /mypage.html

响应示例:

<html>A verysimple HTML page</html>

2、HTTP/1.0

这个版本定义了现在所用的 HTTP结构,类似于一份备忘录,同时引入了新的方法(HEAD和POST)、MIME类型、状态码和协议版本。

HTTP/1.0请求的示例:​​​​​​​

GET /mypage.html HTTP/1.0User-Agent: NCSA_Mosaic/2.0 (Windows 3.1)

响应示例:​​​​​​​

200 OKDate: Tue, 15 Nov 1994 08:12:31 GMTServer: CERN/3.0 libwww/2.17Content-Type: text/html<HTML>A page with an image<IMGSRC="/myimage.gif"></HTML>

3、HTTP/1.1

这个版本于1997年初推出,距离其前身只有几个月。主要变化包括:

  • 持久的TCP连接(keep-alive),可以节省机器和网络资源。在之前的版本中,每个请求都要打开一个新的TCP连接,并在响应后关闭。

  • Host头部,支持在同一个IP下有多个服务器。

  • 有关编码、缓存、语言和MIME类型的头部约定。

HTTP/1.1请求的示例:​​​​​​​

GET /api/fruit/orange HTTP/1.1Host: www.fruityvice.comAccept-Encoding: gzip, deflate, br

响应示例:​​​​​​​

HTTP/1.1 200 OKServer: nginx/1.16.1Date: Sun, 10 Mar 2024 20:44:25 GMTTransfer-Encoding: chunkedConnection: keep-aliveX-Content-Type-Options: nosniffX-XSS-Protection: 1; mode=blockCache-Control: no-store, must-revalidate, no-cache,max-age=0Pragma: no-cacheX-Frame-Options: DENYContent-Type: application/jsonExpires: 0{"name":"Orange","id":2,"family":"Rutaceae","order":"Sapindales","genus":"Citrus","nutritions":{"calories":43,"fat":0.2,"sugar":8.2,"carbohydrates":8.3,"protein":1.0}}

图片

4、HTTP/2

2015年,在对互联网性能进行多年观察和研究后,人们基于谷歌的 SPDY协议,提出并建立了 HTTP/2。

它与 HTTP/1.1有很多不同,包括将多个消息复用到单个 TCP数据包中、消息的二进制格式以及用于头部的 HPACK压缩。

在 HTTP/1.1中,两个请求不能共享同一个 TCP连接,必须等待第一个请求结束后才能开始后续请求。这被称为头部阻塞。在下面的图表中,由于只使用了一个 TCP连接,请求2必须等到响应1到达之后才能发送。

图片

HTTP/2通过流(stream)解决了这个问题,每个流对应一个消息。许多流可以交错在单个 TCP数据包中。如果某个流由于某种原因无法发送其数据,其他流可以在 TCP数据包中顶替它。

HTTP/2的流被分成帧(frame),每个帧包含:帧类型、它所属的流以及长度(以字节为单位)。在下面的图表中,彩色矩形是一个 TCP数据包,✉ 代表其中的一个 HTTP/2帧。第一个和第三个 TCP数据包携带了不同流的帧。

图片

下面的图像展示了帧如何放置在 TCP数据包中。流1携带了一个 JavaScript文件的 HTTP响应,而流2携带了一个 CSS文件的 HTTP响应。

图片

5、HTTP/3

HTTP/3诞生于一个名为 QUIC的新传输协议,该协议由谷歌于2012年创建。QUIC被封装在 UDP内,与 TCP相比,它有以下优点:

  • 建立连接和TLS身份验证的往返包数量更少;

  • 在处理数据包丢失方面具有更强的连接韧性;

  • 解决了TCP和TLS中存在的头部阻塞问题。

HTTP/2解决了 HTTP头部阻塞问题,但是,这个问题在 TCP和 TLS中也存在。TCP认为它需要发送的数据是一系列连续的数据包,如果有任何数据包丢失,必须重新发送,以保持信息的完整性。在 TCP中,直到丢失的数据包成功重新发送到目的地之前,后续的数据包都不能被发送。

下面的图示直观地解释了在 HTTP/2中这种情况是如何发生的。第二个数据包只包含了响应1的帧,但是它的丢失延迟了响应1和响应2,这意味着在这种情况下没有并行处理。

图片

为了解决 TCP的头部阻塞问题,QUIC决定使用 UDP作为传输协议,因为UDP不保证到达。在TCP中作为传输层的数据完整性责任被移至QUIC的应用层,消息的帧可以无序到达,而不会阻塞不相关的流。

图片

图片

与 TCP相关的 TLS(SSL)中的头部阻塞是因为加密通常应用于整个消息内容,这意味着需要接收所有数据之后才能进行解密。使用 QUIC时,加密是针对每个 QUIC数据包的,到达时就可以进行解密,而无需预先接收所有数据包。

带有 TLS的 TCP:

1. 输入:A+B+C

2. 加密:crypt(A+B+C) = D+E+F

3. 数据包:D, E, F

4. 接收:decrypt(D+E+F)

5. A+B+C

带有TLS的QUIC:

1. 输入:A+B+C

2. 加密:crypt(A) = X, crypt(B) = Y, crypt(C) = Z

3. 包:X, Y, Z

4. 接收:decrypt(X) + decrypt(Y) + decrypt(Z)

5. A+B+C

6、比较表

图片

* TLS 1.2需要2次往返进行加密握手,而 TLS 1.3只需要1次,还有 0-RTT(零往返时间恢复)选项,其中不需要先前的握手。然而,0-RTT会导致重放攻击,因此是不安全的。

** QUIC的连接 ID可能被用于指纹识别,一项研究指出,这存在对用户隐私的风险。

7、哪个版本最好?

目前最好的两个版本是 HTTP/2和 HTTP/3。

HTTP/3是为不稳定的连接设计的,例如手机和卫星网络。为了应对网络不稳定性,QUIC在数据流之间具有很高的独立性,并且在丢包时具有很好的弹性。然而,HTTP/3也存在性能损失,主要是因为1)由于 UDP的使用率较低,路由器和操作系统在过去几十年里没有对 UDP协议进行优化,使其相对于 TCP而言速度较慢;2)QUIC使用逐个数据包的加密需要更多的数学运算,效率低于 TCP中使用的整个消息加密。此外,UDP协议在某些网络中受到限制,以防止诸如  UDP洪水攻击和 DNS放大攻击等攻击。

在可靠和稳定的连接上,HTTP/2通常比 HTTP/3提供更好的性能。

一般来说,建议进行兼容性和性能测试,以确定哪个版本最合适。此外,服务器可以接受 HTTP/2和 HTTP/3连接,让客户端决定使用哪个版本。

相关文章:

HTTP 多个版本

了解一下各个版本的HTTP。 上个世纪90年代初期&#xff0c;蒂姆伯纳斯-李&#xff08;Tim Berners-Lee&#xff09;及其 CERN的团队共同努力&#xff0c;制定了互联网的基础&#xff0c;定义了互联网的四个构建模块&#xff1a; 超文本文档格式&#xff08;HTML&#xff09; …...

【DevOps】探索Linux命令行世界:深入了解Shell的力量

目录 一、Linux Shell 详细介绍 1. Shell基础概念 2. Shell的功能特性 3. 常用Shell命令与技巧 4. 高级Shell特性与实践 二、常见的Shell及其比较 1. Bash (Bourne Again SHell) 2. Zsh (Z Shell) 3. Fish (Friendly Interactive SHell) 4. Ksh (Korn SHell) 5. Csh …...

互斥量的使用

文章目录 前言一、互斥量与二进制信号量二、优先级反转与优先级继承三、递归锁 前言 通过学习上一章互斥量理论基础&#xff0c;这一章我们来做一些实验进行验证。 一、互斥量与二进制信号量 互斥量使用和二进制信号量类似 互斥量有优先级继承功能&#xff0c;二进制信号量没有…...

关于面试真题的压迫

1.请描述一下您在使用JavaScript进行DOM操作时&#xff0c;如何提高页面性能和用户体验&#xff1f; 使用事件委托&#xff1a;在父元素上监听事件&#xff0c;而不是为每个子元素都添加事件监听器。这样可以减少事件处理程序的数量&#xff0c;提高性能。 缓存DOM查询&#x…...

1700java进销存管理系统Myeclipse开发sqlserver数据库web结构java编程计算机网页项目

一、源码特点 java web进销存管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为sqlser…...

mysql数据库(排序与分页)

目录 一. 排序数据 1.1 排序规则 1.2 单列排序 1.我们也可以使用列的别名&#xff0c;给别名进行排序 2.列的别名只能在 ODER BY 中使用&#xff0c; 不能在WHERE中使用。 3.强调格式&#xff1a;WHERE 需要在 FROM 后&#xff0c; ORDER BY 之前 1.3 二级排序&…...

Android 实时监听Activity堆栈变化(系统应用)

private val mIActivityManager: IActivityManager ActivityManagerNative.asInterface(ServiceManager.getService(Context.ACTIVITY_SERVICE)) 方式一&#xff08;registerProcessObserver&#xff09; &#xff1a; mIActivityManager.registerProcessObserver(mIProcess…...

双目深度估计原理立体视觉

双目深度估计原理&立体视觉 0. 写在前面1. 双目估计的大致步骤2. 理想双目系统的深度估计公式推导3. 双目标定公式推导4. 极线校正理论推导 0. 写在前面 双目深度估计是通过两个相机的对同一个点的视差来得到给该点的深度。 标准系统的双目深度估计的公式推导需要满足:1)两…...

Redis探索之旅(基础)

目录 今日良言&#xff1a;满怀憧憬&#xff0c;阔步向前 一、基础命令 1.1 通用命令 1.2 五大基本类型的命令 1.2.1 String 1.2.2 Hash 1.2.3 List 1.2.4 Set 1.2.5 Zset 二、过期策略以及单线程模型 2.1 过期策略 2.2 单线程模型 2.3 Redis 效率为什么这么高 三…...

C语言/数据结构——每日一题(链表的中间节点)

一.前言 今天我在LeetCode刷到了一道单链表题&#xff0c;想着和大家分享一下这道题&#xff1a;https://leetcode.cn/problems/middle-of-the-linked-list。废话不多说让我们开始今天的知识分享吧。 二.正文 1.1题目描述 1.2题目分析 这道题有一个非常简便的方法——快慢指…...

这是用VS写的一个tcp客户端和服务端的demo

服务端&#xff1a; 客户端&#xff1a; 其实这里面的核心代码就两行。 客户端的核心代码&#xff1a; //套接字连接服务端 m_tcpSocket->connectToHost(_ip,_port);//通过套接字发送数据m_tcpSocket->write(ui.textEditSend->toPlainText().toUtf8());//如果收到信…...

代码随想录算法训练营day18 | 102.二叉树的层序遍历、226.翻转二叉树、101. 对称二叉树

102.二叉树的层序遍历 迭代法 层序遍历使用队列&#xff0c;同时记录每层的个数 class Solution:def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:res []if not root:return resqueue collections.deque()queue.append(root)while queue:size len…...

工厂自动化升级改造参考(01)--设备通信协议详解及选型

以下是整合了通信协议的特点、应用场景、优缺点以及常用接口方式的描述: 以太网/IP: 来历: 以太网是一种局域网技术,由罗伯特梅特卡夫和大卫博格在1973年开发。IP是网络层协议,负责在网络中的设备间传输数据。特点:基于标准的以太网技术,使用TCP/IP协议栈,支持高速数据传…...

数据结构与算法之经典排序算法

一、简单排序 在我们的程序中&#xff0c;排序是非常常见的一种需求&#xff0c;提供一些数据元素&#xff0c;把这些数据元素按照一定的规则进行排序。比如查询一些订单按照订单的日期进行排序&#xff0c;再比如查询一些商品&#xff0c;按照商品的价格进行排序等等。所以&a…...

VSCode通过SSH连接虚拟机Ubuntu失败

问题说明 最近使用VSCode通过SSH连接Ubuntu&#xff0c;通过VSCode访问Ubuntu进行项目开发&#xff0c;发现连接失败 在VSCode中进行SSH配置 这些都没有问题&#xff0c;但在进行连接时候出现了问题&#xff0c;如下&#xff1a; 出现了下面这个弹窗 解决方法 发现当…...

在Codelab对llama3做Lora Fine tune微调

Unsloth 高效微调大模型的工具&#xff0c;通过Unsloth微调Llama3, Mistral, Gemma 速度提升2-5倍&#xff0c;内存减少70%&#xff01; Codelab 创建一个jupyter notebook 选择 T4 GPU 安装Fine tune 相关的lib %%capture import torch major_version, minor_version torch…...

KEIL 5.38的ARM-CM3/4 ARM汇编设计学习笔记13 - STM32的SDIO学习5 - 卡的轮询读写擦

KEIL 5.38的ARM-CM3/4 ARM汇编设计学习笔记13 - STM32的SDIO学习5 - 卡的轮询读写擦 一、前情提要二、目标三、技术方案3.1 读写擦的操作3.1.1 读卡操作3.1.2 写卡操作3.1.3 擦除操作 3.2 一些技术点3.2.1 轮询标志位的选择不唯一3.2.2 写和擦的卡状态查询3.2.3 写的速度 四、代…...

【C++】HP-Socket(三):UdpClient、UdpServer、UdpCast、UdpNode的区别

1、简述 UDP是无连接的&#xff0c;在UDP传输层中并没有客户端和服务端的概念。但是可以在应用层定义客户端和服务端&#xff0c;可以灵活的互换客户端和服务端&#xff0c;或者同时既是客户端也是服务端。 HP-Socket中在应用层定义了四种UDP组件&#xff1a;UdpClient、UdpS…...

java设计模式六 访问者

访问者模式&#xff08;Visitor Pattern&#xff09;是一种设计模式&#xff0c;它允许你将算法附加到对象结构中的各个元素上&#xff0c;而不必修改对象结构本身。它主要用于处理对象结构非常稳定&#xff0c;但频繁需要在此结构上执行不同操作的场景。访问者模式通过将操作移…...

中间件研发之Springboot自定义starter

Spring Boot Starter是一种简化Spring Boot应用开发的机制&#xff0c;它可以通过引入一些预定义的依赖和配置&#xff0c;让我们快速地集成某些功能模块&#xff0c;而无需繁琐地编写代码和配置文件。Spring Boot官方提供了很多常用的Starter&#xff0c;例如spring-boot-star…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...