当前位置: 首页 > news >正文

C语言----汉诺塔问题

1.什么是汉诺塔问题

简单来说,就是有三个柱子,分别为A柱,B柱,C柱。其中A柱从上往下存放着从小到大的圆盘,我们需要借助B柱和C柱,将A柱上的所有圆盘转移到C柱上,并且一次只能移动一个圆盘,且在移动的过程中,大圆盘不能再小圆盘的上面。

2.思路分析

首先,我们的最终目的是将A柱上的圆盘全部转移到C柱上。则当A柱上只有一个圆盘,我们直接将A柱上的圆盘转移到C柱上就行了。

如下图所示

01f64242e3034f7cb36d3b3412af5e3d.png

45385a36be1a43a082664f30ff4a3ef0.png

当A柱上有多个圆盘时,就很复杂了,我们需要慢慢来分析。

当A柱上有2个圆盘时。我们要先将第一个圆盘转移到B柱上,然后再将第二个圆盘转移到C柱上,然后再将B柱上的圆盘转移到C柱上。

简化为 A->B   A->C   B->C。

如下图所示

d197cd4ebb694cc587fc602cc7bf6569.png

1c427cb81bfd4d81a1a3edde7f502a02.png

bffc2f3aa49a40d9be4f2efecec1cf05.png

4d2c05defe0e42058fd4ef07b77d82d1.png

当有3个圆盘时。

我们先将A盘上的第一个盘子转移到C柱,再将A柱上的第二个圆盘转移到B柱上,接着再将C盘上的圆盘转移到B柱上,再将A柱上的最后一个圆盘转移到C柱上,接着再将B柱上的第一个圆盘转移到A柱上,再将B柱上的最后一个圆盘转移到C柱上,接着再将A柱上的圆盘转移到C柱上,就完成了。

简化来说,A->C   A->B   C->B  A->C   B->A  B->C   A->C。

如下图所示  

72e98282dcc543c9bd7a04567de74aef.png

b95b0be7e2404998b36eb8d467357ebc.png

5861ebbe9b8e4e10ade3b6922dff2b7f.png

902dd8ec28ad45d883c76ac1c26f79ce.png

375a5bd897424d2ebf0412697cce75c0.png

da2829ea68524f689bc04b2d2fafbdac.png

bd4fe26ff48d4c8198c887e98b785d4a.png

78968d4ce12d4bf6a18b0e19be47e3e7.png

 通过2个圆盘和3个圆盘的例子发现,要向将A柱上的圆盘按要求转移到C柱上,我们要将n-1个圆盘全部转移到B柱上。

代码实现

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int count = 0;//全局变量做计数器
void move(char Tower_1, char Tower_2)
{printf("将 %c 移动到 %c \n", Tower_1, Tower_2);count++;
}
void Hanoi(int n, char Tower_1, char Tower_2, char Tower_3)
{if (n == 1)//是一个的话就直接从Tower_1移动到Tower_3move(Tower_1, Tower_3);else{//不是一个的话先借助Tower_3将Tower_1上面的n-1个移动到Tower_2Hanoi(n - 1, Tower_1, Tower_3, Tower_2);//完成此过程后Tower_1上面还有最后一个 move(Tower_1, Tower_3); //将Tower_1上面的最后一个移动到Tower_3//将Tower_2上面的n-1个通过Tower_1移动到Tower_3Hanoi(n - 1, Tower_2, Tower_1, Tower_3);}
}
int main()
{printf("请输入圆盘个数:\n");int n = 0;scanf("%d", &n);Hanoi(n, 'A', 'B', 'C');printf("一共进行了%d次", count);return 0;
}

汉诺塔问题涉及到了递归的的问题,其里面有两个递归的过程,其实十分复杂的。 

相关文章:

C语言----汉诺塔问题

1.什么是汉诺塔问题 简单来说&#xff0c;就是有三个柱子&#xff0c;分别为A柱&#xff0c;B柱&#xff0c;C柱。其中A柱从上往下存放着从小到大的圆盘&#xff0c;我们需要借助B柱和C柱&#xff0c;将A柱上的所有圆盘转移到C柱上&#xff0c;并且一次只能移动一个圆盘&#…...

Python中驼峰命名法和下划线命名法相互转换的实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

【hackmyvm】vivifytech靶机

渗透思路 信息收集端口扫描端口服务信息目录扫描爆破hydra--sshgit提权 信息收集 ┌──(kali㉿kali)-[~] └─$ fping -ag 192.168.9.0/24 2>/dev/null 192.168.9.119 --主机 192.168.9.164 --靶机个人习惯&#xff0c;也方便后续操作&#xff0c;将IP地址赋值给一个变…...

纯血鸿蒙APP实战开发——手写绘制及保存图片

介绍 本示例使用drawing库的Pen和Path结合NodeContainer组件实现手写绘制功能。手写板上完成绘制后&#xff0c;通过调用image库的packToFile和packing接口将手写板的绘制内容保存为图片&#xff0c;并将图片文件保存在应用沙箱路径中。 效果图预览 使用说明 在虚线区域手写…...

在什么情况下表单会被重复提交?如何避免?

表单被重复提交是Web应用中常见的问题&#xff0c;通常在用户提交表单后点击按钮多次&#xff0c;或在表单提交后刷新页面时发生。这可能导致数据的重复处理&#xff0c;比如重复记录或订单。 何时会发生表单重复提交&#xff1f; 用户多次点击提交按钮&#xff1a;在网络延迟…...

JavaScript 中的 Class 类

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 &#x1f525; 引言&#x1f3af; 基础知识&#x1f3d7;️ 构造函数 (Constructor)&#x1f510; 私有字段 (Private Fields)&#x1f510; 私有方法 (Private Methods)&#x1f9ec; 继承 (Inheritance)&#x1f4e6; 静态…...

python实验三 实现UDP协议、TCP协议进行服务器端与客户端的交互

实验三 实验题目 1、请利用生成器构造一下求阶乘的函数Factorial()&#xff0c;定义一个函数m()&#xff0c;在m()中调用生成器Factorial()生成小于100的阶乘序列存入集合s中&#xff0c;输出s。 【代码】 def factorial():n1f1while 1:​ f * n​ yield (f)​ n1…...

ServiceNow 研究:通过RAG减少结构化输出中的幻觉

论文地址&#xff1a;https://arxiv.org/pdf/2404.08189 原文地址&#xff1a;rag-hallucination-structure-research-by-servicenow 在灾难性遗忘和模型漂移中&#xff0c;幻觉仍然是一个挑战。 2024 年 4 月 18 日 灾难性遗忘&#xff1a; 这是在序列学习或连续学习环境中出现…...

ADS基础教程10-多态性(动态模型选择)

目录 一、多态性定义二、操作步骤&#xff11;.模型建立&#xff12;.模型选择&#xff13;.执行仿真 一、多态性定义 ADS中支持一个Symbol中&#xff0c;可以同时存在多个子图。在仿真时可以动态选择不同的子图继续宁仿真。 二、操作步骤 &#xff11;.模型建立 在上一章A…...

代码随想录第四十六天|单词拆分

题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09;...

RabbitMQ的介绍和使用

1.同步通讯和异步通讯 举个例子&#xff0c;同步通讯就像是在打电话&#xff0c;因此它时效性较强&#xff0c;可以立即得到结果&#xff0c;但如果你正在和一个MM打电话&#xff0c;其他MM找你的话&#xff0c;你们之间是不能进行消息的传递和响应的 异步通讯就像是微信&#…...

前端get请求日期类型参数向后端传参失败

1、背景 get请求&#xff0c;通过url上传参&#xff0c;因此日期类型是string类型数据 2、异常信息 nested exception is org.springframework.core.convert.ConversionFailedException: Failed to convert from type [java.lang.String] to type [java.time.LocalDate] for…...

【docker 】 push 镜像提示:denied: requested access to the resource is denied

往 Docker Registry &#xff08;私服&#xff09;push 镜像提示&#xff1a;denied: requested access to the resource is denied 镜像push 语法&#xff1a;docker push <registry-host>:<registry-port>/<repository>:<tag> docker push 192.16…...

浏览器各类好用插件使用及常见问题(技巧)总结

目录 Vimium C快捷键问题为什么Vimium C - 全键盘操作浏览器插件在百度页面中, x ,o,f等快捷键不起作用如何使用viminum c插件进行自定义快捷键?vimucm 为什么在浏览器首页时快捷键不起作用? 网页截图问题firefox 网页截图使用 idm问题浏览器点击idm 不下载? 待续、更新中 V…...

Python批量计算多张遥感影像的NDVI

本文介绍基于Python中的gdal模块&#xff0c;批量基于大量多波段遥感影像文件&#xff0c;计算其每1景图像各自的NDVI数值&#xff0c;并将多景结果依次保存为栅格文件的方法。 如下图所示&#xff0c;现在有大量.tif格式的遥感影像文件&#xff0c;其中均含有红光波段与近红外…...

6.k8s中的secrets资源

一、Secret secrets资源&#xff0c;类似于configmap资源&#xff0c;只是secrets资源是用来传递重要的信息的&#xff1b; secret资源就是将value的值使用base64编译后传输&#xff0c;当pod引用secret后&#xff0c;k8s会自动将其base64的编码&#xff0c;反编译回正常的字符…...

git 更换远程仓库地址三种方法总结

git 更换远程仓库地址三种方法总结 一、前言 由于私服的 gitlab 的地址变更&#xff0c;导致部分项目代码提交不上去&#xff0c;需要修改远端仓地址。 其它需要修改远程仓地址的情况如&#xff1a;切换git clone 协议由ssh变为https。 二、环境 windows 10git version 2.3…...

快速找出存(不存在)在某个(或多个)文件的文件夹

首先&#xff0c;需要用到的这个工具&#xff1a; 度娘网盘 提取码&#xff1a;qwu2 蓝奏云 提取码&#xff1a;2r1z 想要找出有下面这个文件存在的文件夹 切换到批量文件复制版块&#xff0c;快捷键Ctrl5 右侧&#xff0c;搜索添加 选定范围&#xff0c;勾选搜索文件夹、包…...

Linux USB转串口设备路径的查找方法

1、USB转串口设备 USB转串口设备是在嵌入式软件开发过程中经常要使用的&#xff0c;常常用于对接各种各样的串口设备。如果一台linux主机上使用多个usb转串口设备时&#xff0c;应用程序中就需要知道自己操作的是哪个串口设备。串口设备在系统上电时&#xff0c;由于驱动加载的…...

【初阶数据结构】单链表之环形链表

目录标题 前言环形链表的约瑟夫问题环形链表环形链表|| 前言 前面我们已经学习了关于单链表的一些基本东西&#xff0c;今天我们来学习单链表的一个拓展——环形链表&#xff0c;我们将用力扣和牛客网上的三道题目来分析讲解环形链表问题。 环形链表的约瑟夫问题 我们首先来看…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...