当前位置: 首页 > news >正文

C语言----汉诺塔问题

1.什么是汉诺塔问题

简单来说,就是有三个柱子,分别为A柱,B柱,C柱。其中A柱从上往下存放着从小到大的圆盘,我们需要借助B柱和C柱,将A柱上的所有圆盘转移到C柱上,并且一次只能移动一个圆盘,且在移动的过程中,大圆盘不能再小圆盘的上面。

2.思路分析

首先,我们的最终目的是将A柱上的圆盘全部转移到C柱上。则当A柱上只有一个圆盘,我们直接将A柱上的圆盘转移到C柱上就行了。

如下图所示

01f64242e3034f7cb36d3b3412af5e3d.png

45385a36be1a43a082664f30ff4a3ef0.png

当A柱上有多个圆盘时,就很复杂了,我们需要慢慢来分析。

当A柱上有2个圆盘时。我们要先将第一个圆盘转移到B柱上,然后再将第二个圆盘转移到C柱上,然后再将B柱上的圆盘转移到C柱上。

简化为 A->B   A->C   B->C。

如下图所示

d197cd4ebb694cc587fc602cc7bf6569.png

1c427cb81bfd4d81a1a3edde7f502a02.png

bffc2f3aa49a40d9be4f2efecec1cf05.png

4d2c05defe0e42058fd4ef07b77d82d1.png

当有3个圆盘时。

我们先将A盘上的第一个盘子转移到C柱,再将A柱上的第二个圆盘转移到B柱上,接着再将C盘上的圆盘转移到B柱上,再将A柱上的最后一个圆盘转移到C柱上,接着再将B柱上的第一个圆盘转移到A柱上,再将B柱上的最后一个圆盘转移到C柱上,接着再将A柱上的圆盘转移到C柱上,就完成了。

简化来说,A->C   A->B   C->B  A->C   B->A  B->C   A->C。

如下图所示  

72e98282dcc543c9bd7a04567de74aef.png

b95b0be7e2404998b36eb8d467357ebc.png

5861ebbe9b8e4e10ade3b6922dff2b7f.png

902dd8ec28ad45d883c76ac1c26f79ce.png

375a5bd897424d2ebf0412697cce75c0.png

da2829ea68524f689bc04b2d2fafbdac.png

bd4fe26ff48d4c8198c887e98b785d4a.png

78968d4ce12d4bf6a18b0e19be47e3e7.png

 通过2个圆盘和3个圆盘的例子发现,要向将A柱上的圆盘按要求转移到C柱上,我们要将n-1个圆盘全部转移到B柱上。

代码实现

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int count = 0;//全局变量做计数器
void move(char Tower_1, char Tower_2)
{printf("将 %c 移动到 %c \n", Tower_1, Tower_2);count++;
}
void Hanoi(int n, char Tower_1, char Tower_2, char Tower_3)
{if (n == 1)//是一个的话就直接从Tower_1移动到Tower_3move(Tower_1, Tower_3);else{//不是一个的话先借助Tower_3将Tower_1上面的n-1个移动到Tower_2Hanoi(n - 1, Tower_1, Tower_3, Tower_2);//完成此过程后Tower_1上面还有最后一个 move(Tower_1, Tower_3); //将Tower_1上面的最后一个移动到Tower_3//将Tower_2上面的n-1个通过Tower_1移动到Tower_3Hanoi(n - 1, Tower_2, Tower_1, Tower_3);}
}
int main()
{printf("请输入圆盘个数:\n");int n = 0;scanf("%d", &n);Hanoi(n, 'A', 'B', 'C');printf("一共进行了%d次", count);return 0;
}

汉诺塔问题涉及到了递归的的问题,其里面有两个递归的过程,其实十分复杂的。 

相关文章:

C语言----汉诺塔问题

1.什么是汉诺塔问题 简单来说&#xff0c;就是有三个柱子&#xff0c;分别为A柱&#xff0c;B柱&#xff0c;C柱。其中A柱从上往下存放着从小到大的圆盘&#xff0c;我们需要借助B柱和C柱&#xff0c;将A柱上的所有圆盘转移到C柱上&#xff0c;并且一次只能移动一个圆盘&#…...

Python中驼峰命名法和下划线命名法相互转换的实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

【hackmyvm】vivifytech靶机

渗透思路 信息收集端口扫描端口服务信息目录扫描爆破hydra--sshgit提权 信息收集 ┌──(kali㉿kali)-[~] └─$ fping -ag 192.168.9.0/24 2>/dev/null 192.168.9.119 --主机 192.168.9.164 --靶机个人习惯&#xff0c;也方便后续操作&#xff0c;将IP地址赋值给一个变…...

纯血鸿蒙APP实战开发——手写绘制及保存图片

介绍 本示例使用drawing库的Pen和Path结合NodeContainer组件实现手写绘制功能。手写板上完成绘制后&#xff0c;通过调用image库的packToFile和packing接口将手写板的绘制内容保存为图片&#xff0c;并将图片文件保存在应用沙箱路径中。 效果图预览 使用说明 在虚线区域手写…...

在什么情况下表单会被重复提交?如何避免?

表单被重复提交是Web应用中常见的问题&#xff0c;通常在用户提交表单后点击按钮多次&#xff0c;或在表单提交后刷新页面时发生。这可能导致数据的重复处理&#xff0c;比如重复记录或订单。 何时会发生表单重复提交&#xff1f; 用户多次点击提交按钮&#xff1a;在网络延迟…...

JavaScript 中的 Class 类

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 &#x1f525; 引言&#x1f3af; 基础知识&#x1f3d7;️ 构造函数 (Constructor)&#x1f510; 私有字段 (Private Fields)&#x1f510; 私有方法 (Private Methods)&#x1f9ec; 继承 (Inheritance)&#x1f4e6; 静态…...

python实验三 实现UDP协议、TCP协议进行服务器端与客户端的交互

实验三 实验题目 1、请利用生成器构造一下求阶乘的函数Factorial()&#xff0c;定义一个函数m()&#xff0c;在m()中调用生成器Factorial()生成小于100的阶乘序列存入集合s中&#xff0c;输出s。 【代码】 def factorial():n1f1while 1:​ f * n​ yield (f)​ n1…...

ServiceNow 研究:通过RAG减少结构化输出中的幻觉

论文地址&#xff1a;https://arxiv.org/pdf/2404.08189 原文地址&#xff1a;rag-hallucination-structure-research-by-servicenow 在灾难性遗忘和模型漂移中&#xff0c;幻觉仍然是一个挑战。 2024 年 4 月 18 日 灾难性遗忘&#xff1a; 这是在序列学习或连续学习环境中出现…...

ADS基础教程10-多态性(动态模型选择)

目录 一、多态性定义二、操作步骤&#xff11;.模型建立&#xff12;.模型选择&#xff13;.执行仿真 一、多态性定义 ADS中支持一个Symbol中&#xff0c;可以同时存在多个子图。在仿真时可以动态选择不同的子图继续宁仿真。 二、操作步骤 &#xff11;.模型建立 在上一章A…...

代码随想录第四十六天|单词拆分

题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09;...

RabbitMQ的介绍和使用

1.同步通讯和异步通讯 举个例子&#xff0c;同步通讯就像是在打电话&#xff0c;因此它时效性较强&#xff0c;可以立即得到结果&#xff0c;但如果你正在和一个MM打电话&#xff0c;其他MM找你的话&#xff0c;你们之间是不能进行消息的传递和响应的 异步通讯就像是微信&#…...

前端get请求日期类型参数向后端传参失败

1、背景 get请求&#xff0c;通过url上传参&#xff0c;因此日期类型是string类型数据 2、异常信息 nested exception is org.springframework.core.convert.ConversionFailedException: Failed to convert from type [java.lang.String] to type [java.time.LocalDate] for…...

【docker 】 push 镜像提示:denied: requested access to the resource is denied

往 Docker Registry &#xff08;私服&#xff09;push 镜像提示&#xff1a;denied: requested access to the resource is denied 镜像push 语法&#xff1a;docker push <registry-host>:<registry-port>/<repository>:<tag> docker push 192.16…...

浏览器各类好用插件使用及常见问题(技巧)总结

目录 Vimium C快捷键问题为什么Vimium C - 全键盘操作浏览器插件在百度页面中, x ,o,f等快捷键不起作用如何使用viminum c插件进行自定义快捷键?vimucm 为什么在浏览器首页时快捷键不起作用? 网页截图问题firefox 网页截图使用 idm问题浏览器点击idm 不下载? 待续、更新中 V…...

Python批量计算多张遥感影像的NDVI

本文介绍基于Python中的gdal模块&#xff0c;批量基于大量多波段遥感影像文件&#xff0c;计算其每1景图像各自的NDVI数值&#xff0c;并将多景结果依次保存为栅格文件的方法。 如下图所示&#xff0c;现在有大量.tif格式的遥感影像文件&#xff0c;其中均含有红光波段与近红外…...

6.k8s中的secrets资源

一、Secret secrets资源&#xff0c;类似于configmap资源&#xff0c;只是secrets资源是用来传递重要的信息的&#xff1b; secret资源就是将value的值使用base64编译后传输&#xff0c;当pod引用secret后&#xff0c;k8s会自动将其base64的编码&#xff0c;反编译回正常的字符…...

git 更换远程仓库地址三种方法总结

git 更换远程仓库地址三种方法总结 一、前言 由于私服的 gitlab 的地址变更&#xff0c;导致部分项目代码提交不上去&#xff0c;需要修改远端仓地址。 其它需要修改远程仓地址的情况如&#xff1a;切换git clone 协议由ssh变为https。 二、环境 windows 10git version 2.3…...

快速找出存(不存在)在某个(或多个)文件的文件夹

首先&#xff0c;需要用到的这个工具&#xff1a; 度娘网盘 提取码&#xff1a;qwu2 蓝奏云 提取码&#xff1a;2r1z 想要找出有下面这个文件存在的文件夹 切换到批量文件复制版块&#xff0c;快捷键Ctrl5 右侧&#xff0c;搜索添加 选定范围&#xff0c;勾选搜索文件夹、包…...

Linux USB转串口设备路径的查找方法

1、USB转串口设备 USB转串口设备是在嵌入式软件开发过程中经常要使用的&#xff0c;常常用于对接各种各样的串口设备。如果一台linux主机上使用多个usb转串口设备时&#xff0c;应用程序中就需要知道自己操作的是哪个串口设备。串口设备在系统上电时&#xff0c;由于驱动加载的…...

【初阶数据结构】单链表之环形链表

目录标题 前言环形链表的约瑟夫问题环形链表环形链表|| 前言 前面我们已经学习了关于单链表的一些基本东西&#xff0c;今天我们来学习单链表的一个拓展——环形链表&#xff0c;我们将用力扣和牛客网上的三道题目来分析讲解环形链表问题。 环形链表的约瑟夫问题 我们首先来看…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...