Matlab实现FFT变换
Matlab实现FFT变换
文章目录
- Matlab实现FFT变换
- 原理
- 实现
- 手算验证
- 简单fft变换和频谱
- 求取功率谱
- 结论
在信号处理中,快速傅里叶变换(FFT)是一种非常常见的频域分析方法。本文将介绍如何使用Matlab实现FFT变换,并通过Matlab代码演示实际输出结果。
原理
FFT是一种计算离散傅里叶变换(DFT)的快速算法。DFT将时域上的信号转换为频域上的信号,可以用以下公式表示:
Xk=∑n=0N−1xne−i2πkn/NX_k=\sum_{n=0}^{N-1}x_n e^{-i2\pi kn/N}Xk=n=0∑N−1xne−i2πkn/N
其中,xnx_nxn是时域上的信号序列,XkX_kXk是频域上的信号序列,kkk为频率编号(0≤k<N0\leq k < N0≤k<N),NNN为信号长度。
FFT算法通过分治策略将DFT算法的计算复杂度从O(N2)O(N^2)O(N2)降低到O(Nlog2N)O(Nlog_2N)O(Nlog2N),从而实现了在计算机上快速计算DFT的目的。
实现
手算验证
在这里,我们将给出一个简单的例子来说明如何使用Matlab进行FFT变换。我们首先生成一个简单的数组:
x = [1, 2, 3, 4, 5, 6, 7, 8];
接下来,我们使用Matlab内置的fft函数对这个数组进行FFT变换:
X = fft(x);
这个操作会返回一个和输入数组长度相同的复数数组。我们可以使用Matlab的disp函数打印出这个数组:
disp(X);
这个例子的输出结果如下:
36.0000 + 0.0000i-4.0000 + 9.6569i-4.0000 + 4.0000i-4.0000 + 1.6569i-4.0000 + 0.0000i-4.0000 - 1.6569i-4.0000 - 4.0000i-4.0000 - 9.6569i
可以看到,输出结果是一个长度为8的复数数组。
为了验证FFT的正确性,我们可以手动计算这个输入数组的FFT结果,然后将结果与Matlab计算的结果进行比较。FFT算法的计算过程可以用以下公式表示:
Xk=∑n=0N−1xne−i2πkn/NX_k=\sum_{n=0}^{N-1}x_n e^{-i2\pi kn/N}Xk=n=0∑N−1xne−i2πkn/N
其中,xnx_nxn是时域上的信号序列,XkX_kXk是频域上的信号序列,kkk为频率编号(0≤k<N0\leq k < N0≤k<N),NNN为信号长度。
对于输入数组x=[1,2,3,4,5,6,7,8]x=[1,2,3,4,5,6,7,8]x=[1,2,3,4,5,6,7,8],我们有N=8N=8N=8。因此,X0X_0X0的计算公式为:
X0=∑n=07xne−i2π0n/8=36X_0 = \sum_{n=0}^{7}x_n e^{-i2\pi 0n/8}=36X0=n=0∑7xne−i2π0n/8=36
接下来,我们可以计算X1X_1X1:
X1=∑n=07xne−i2π1n/8=−4+9.6569iX_1 = \sum_{n=0}^{7}x_n e^{-i2\pi 1n/8}=-4+9.6569iX1=n=0∑7xne−i2π1n/8=−4+9.6569i
以此类推,我们可以计算出所有的XkX_kXk。最终结果应该与Matlab计算的结果一致。
简单fft变换和频谱
以下是一个简单的Matlab代码实现FFT变换:
% 生成测试信号
Fs = 1000; % 采样频率
t = 0:1/Fs:1-1/Fs; % 时间向量
x = 1*sin(2*pi*100*t); % 信号% 绘制信号图
subplot(2,1,1);
plot(t,x);
title('信号');
xlabel('时间 (s)');
ylabel('幅度');% 计算FFT
N = length(x);
X = fft(x);
f = Fs*(0:(N/2))/N;% 绘制FFT图
subplot(2,1,2);
plot(f,abs(X(1:N/2+1)));
title('FFT');
xlabel('频率 (Hz)');
ylabel('幅度');
在这个例子中,我们生成了一个频率为100Hz的正弦信号。我们使用Matlab的fft函数计算FFT,并将结果绘制成幅度谱。注意,在绘制幅度谱时,我们只绘制了频率为正的一半,因为FFT算法输出的结果是对称的。
求取功率谱
通过FFT变换可以得到信号的幅度谱,但是为了更好地了解信号特性,我们通常需要求取信号的功率谱密度。功率谱密度描述了信号在不同频率下的功率分布情况。
求取功率谱的方法是,将信号进行FFT变换后,将每个频率上的幅度平方除以信号长度,并乘以一个系数,即可得到功率谱密度。具体公式如下:
Pk=2∣Xk∣2NP_k=\frac{2|X_k|^2}{N}Pk=N2∣Xk∣2
其中,PkP_kPk是频率为kkk的功率谱密度,XkX_kXk是频率为kkk的信号幅度,NNN是信号长度。
以下是一个简单的Matlab代码实现求取功率谱:
% 生成测试信号
Fs = 1000; % 采样频率
t = 0:1/Fs:1-1/Fs; % 时间向量
x = 1*sin(2*pi*100*t); % 信号% 绘制信号图
subplot(2,1,1);
plot(t,x);
title('信号');
xlabel('时间 (s)');
ylabel('幅度');% 计算FFT
N = length(x);
X = fft(x);
f = Fs*(0:(N/2))/N;% 计算功率谱
P = (2*abs(X(1:N/2+1)).^2)/N;% 绘制功率谱图
subplot(2,1,2);
plot(f,P);
title('功率谱密度');
xlabel('频率 (Hz)');
ylabel('功率');
注意,我们在计算功率谱时,使用了一个系数222,这是因为我们只绘制了频率为正的一半,而实际上信号的功率谱是对称的。
结论
本文介绍了如何使用Matlab实现FFT变换,并求取信号的功率谱密度。通过FFT变换,我们可以将信号从时域转换到频域,进一步了解信号的特性。
相关文章:

Matlab实现FFT变换
Matlab实现FFT变换 文章目录Matlab实现FFT变换原理实现手算验证简单fft变换和频谱求取功率谱结论在信号处理中,快速傅里叶变换(FFT)是一种非常常见的频域分析方法。本文将介绍如何使用Matlab实现FFT变换,并通过Matlab代码演示实际…...

JVM调优面试题——垃圾回收专题
文章目录1、如何确定一个对象是垃圾?1.1、引用计数法1.2、可达性分析2、对象被判定为不可达对象之后就“死”了吗?3、都有哪些垃圾收集算法?3.1、 标记-清除(Mark-Sweep)3.2、标记-复制(Mark-Copying)3.3、标记-整理(Mark-Compact)3.4、分代收…...

java启动命令中-D和--的区别
目录一、java -D 添加参数二、java -- 添加参数在 SpringBoot 项目中,启动时,通过 -D 或 -- 添加参数,都可以直接覆盖 yml 或 properties 配置文件中的同名配置,如果不存在则相当于添加了一个配置。 一、java -D 添加参数 java -D…...

QML Popup详解
1.简介 弹出式用户界面控件,它可以与Window或ApplicationWindow一起使用,默认不可见。 常用属性介绍,一些公用的基础属性就不作介绍,可以查看我前面写的文章。 closePolicy : enumeration :此属性决定弹出窗口关闭的…...

[2.1.6]进程管理——线程的实现方式和多线程模型
文章目录第二章 进程管理线程的实现方式和多线程模型一、线程的实现方式(一)用户级线程(二)内核级线程二、多线程模型(一)一对一模型(二)多对一模型(三)多对多…...

小白做什么兼职项目赚钱?宝妈拍短视频赚钱的方法
很多宝妈在家带孩子之余想做兼职赚点小钱,依靠互联网无疑是比较方便的途径,在刷单、微商等网上兼职成为过去式以后,很多宝妈选择了短视频创业。 宝妈怎么拍短视频? 宝妈因为要照顾宝宝还要兼顾家务,空闲的时间比较琐碎…...

第十四届蓝桥杯第三期模拟赛 C/C++ B组 原题与详解
文章目录 一、填空题 1、1 找最小全字母十六进制数 1、1、1 题目描述 1、1、2 题解关键思路与解答 1、2 给列命名 1、2、1 题目描述 1、2、2 题解关键思路与解答 1、3 日期相等 1、3、1 题目描述 1、3、2 题解关键思路与解答 1、4 乘积方案数 1、4、1 题目描述 1、4、2 题解关…...

Linux中断操作
一、thread_irq在内核中, 除了可以通过request_irq() 、 devm_request_irq()申请中断以外, 还可以通过以下二个函数申请( 它们比request_irq和devm_request_irq多了一个参数thread_fn)。 用这两个API申请中断的时候, 内核会为相应的中断号分配…...
看看CabloyJS是如何异步加载并执行go wasm模块的
介绍 CabloyJS提供了一个内置模块a-wasmgo,将go wasm模块的异步加载运行机制进行了封装,使我们可以非常方便的在CabloyJS项目中引入go wasm,从而支持更多的业务场景开发 下面,我们以测试模块test-party为例,演示引入…...

嵌入式C语言九大数据结构操作方式详解
在C语言的开发过程中,灵活使用数据结构,对提高编程效率有极大的帮助。 目录 1 数组 2 链表 3 跳表 4 栈 5 队列 6 树 7 堆 8 散列表 9 图 10 总结 数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据…...

【C++学习】栈 | 队列 | 优先级队列 | 反向迭代器
🐱作者:一只大喵咪1201 🐱专栏:《C学习》 🔥格言:你只管努力,剩下的交给时间! 栈 | 队列 | 优先级队列 | 反向迭代器😼容器适配器🙈什么是适配器ὤ…...

Python—看我分析下已经退市的 可转债 都有什么特点
分析 需求分析 可转债退市原因的种类与占比是多少 强赎与非强赎导致的退市可转债 存续时间 维度占比 强赎与非强赎导致的退市可转债 发行资金 规模占比 强赎与非强赎导致的退市可转债 各个评级 的占比 强赎与非强赎导致的退市可转债 各个行业(一级行业…...

【第八课】空间数据基础与处理——数据结构转化
一、前言 数据结构即指数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。对空间数据则是地理实体的空间排列方式和相互关系的抽象描述。它是对数据的一种理解和解释,不说明数据结构的数据是毫无用处的,不仅用户无法理解,计算机程序也不能正确地处理,对同样一组数…...

MATLAB绘制三Y轴坐标图:补充坐标轴及字体设置
三轴坐标图 1 函数 MATLAB绘制三轴图函数可见MATLAB帮助-multiplotyyy 基础图形绘制是很简单,但坐标轴及字体设置该如何实现呢? 本文以以下几个例子为例,希望可以解决在利用MATLAB绘制三轴坐标图时常见的疑惑。 2 案例 2.1 案例1…...

springboot项目中Quartz
下面内容大家可在自己创建的 springboot项目中 玩1 定时清理垃圾图片定时任务组件Quartz,可以根据我们设定的周期,定时执行目标任务计划1.1 Quartz介绍(了解)Quartz是Job scheduling(作业调度)领域的一个开源项目&…...

Presto本地开发,plugin的设置
1. 新的问题 之前搭建Presto的本地开发环境时,一直使用config.properties中的plugin.bundles配置项定义需要加载的plugin模块,详细可以参考博客《win10基于IDEA,搭建Presto开发环境》presto服务启动时,指定加载哪些组件ÿ…...

2023年3月西安/杭州/深圳/东莞NPDP产品经理认证考试报名
产品经理国际资格认证NPDP是国际公认的唯一的新产品开发专业认证,集理论、方法与实践为一体的全方位的知识体系,为公司组织层级进行规划、决策、执行提供良好的方法体系支撑。 【认证机构】 产品开发与管理协会(PDMA)成立于1979年…...

Vue3笔记01 创建项目,Composition API,新组件,其他
Vue3 创建Vue3项目 vue-cli //查看vue/cli版本,确保在4.5.0以上 vue --version //安装或升级vue/cli npm install -g vue/cli //创建项目 vue create new_project //启动 cd new_project npm run serve 也可以通过vue ui进入图形化界面进行创建 vite 新一代前端…...

pandas数据分析(二)
文章目录DataFrame数据处理与分析读取Excel文件中的数据筛选符合特定条件的数据查看数据特征和统计信息按不同标准对数据排序使用分组与聚合对员工业绩进行汇总DataFrame数据处理与分析 部分数据如下 这个数据百度可以搜到,就是下面这个 读取Excel文件中的数据 …...
Spring实现[拦截器+统一异常处理+统一数据返回]
Spring拦截器 1.实现一个普通拦截器 关键步骤 实现 HandlerInterceptor 接口重写 preHeadler 方法,在方法中编写自己的业务代码 Component public class LoginInterceptor implements HandlerInterceptor {/*** 此方法返回一个 boolean,如果为 true …...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...