2024.5.2 —— LeetCode 高频题复盘
目录
- 151. 反转字符串中的单词
- 129. 求根节点到叶节点数字之和
- 104. 二叉树的最大深度
- 101. 对称二叉树
- 110. 平衡二叉树
- 144. 二叉树的前序遍历
- 543. 二叉树的直径
- 48. 旋转图像
- 98. 验证二叉搜索树
- 39. 组合总和
151. 反转字符串中的单词
题目链接
class Solution:def reverseWords(self, s: str) -> str:ls=s.strip().split()ls.reverse()res=" ".join(ls)return res
129. 求根节点到叶节点数字之和
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def helper(self,root,i):if not root:return 0temp=i*10+root.valif not root.left and not root.right:return tempreturn self.helper(root.left,temp)+self.helper(root.right,temp)def sumNumbers(self, root: Optional[TreeNode]) -> int:return self.helper(root,0)
104. 二叉树的最大深度
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0leftHight=self.maxDepth(root.left)rightHigh=self.maxDepth(root.right)return max(leftHight,rightHigh)+1
101. 对称二叉树
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isSymmetric(self, root: Optional[TreeNode]) -> bool:def judge(left,right):if not left and not right:return Trueelif not left or not right:return Falseelif left.val!=right.val:return Falseelse:return judge(left.left,right.right) and judge(left.right,right.left)if not root:return Truereturn judge(root.left,root.right)
110. 平衡二叉树
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isBalanced(self, root: Optional[TreeNode]) -> bool:# 二叉树的最大深度def height(root):if not root:return 0return max(height(root.left),height(root.right))+1if not root:return Truereturn abs(height(root.left)-height(root.right))<=1 and self.isBalanced(root.left) and self.isBalanced(root.right)
144. 二叉树的前序遍历
题目链接
递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:lis=[]def traversal(root):if not root:returnlis.append(root.val)traversal(root.left)traversal(root.right)traversal(root)return lis
非递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:white,gray=0,1stack=[(white,root)]res=[]while stack:color,node=stack.pop()if node is None:continueif color==white:stack.append((white,node.right))stack.append((white,node.left))stack.append((gray,node))else:res.append(node.val)return res
543. 二叉树的直径
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:# 一条路径的长度为该路径经过的节点数减一,# 所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一self.max=0def depth(root):if not root:return 0left=depth(root.left)right=depth(root.right)self.max=max(self.max,left+right+1)return max(left,right)+1depth(root)return self.max-1
48. 旋转图像
题目链接
class Solution:def rotate(self, matrix: List[List[int]]) -> None:"""Do not return anything, modify matrix in-place instead."""# 用翻转代替旋转# 先水平翻转再主对角线翻转即可得到将图像顺时针旋转90度的图像n=len(matrix)# 水平翻转for i in range(n//2):for j in range(n):matrix[i][j],matrix[n-1-i][j]=matrix[n-1-i][j],matrix[i][j]# 主对角线翻转for i in range(n):for j in range(i):matrix[i][j],matrix[j][i]=matrix[j][i],matrix[i][j]
98. 验证二叉搜索树
题目链接
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isValidBST(self, root: Optional[TreeNode]) -> bool:# 中序遍历:左中右self.pre=Nonedef dfs(root):if not root:return Trueleft=dfs(root.left)if self.pre and self.pre.val>=root.val:return Falseself.pre=rootright=dfs(root.right)return left and rightreturn dfs(root)
39. 组合总和
题目链接
class Solution:def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:path=[]res=[]def backtracking(candidates,s,target,startIndex):if s>target: # 要剪枝必须排序returnif s==target:res.append(path[:])returnfor i in range(startIndex,len(candidates)):s+=candidates[i]path.append(candidates[i])backtracking(candidates,s,target,i) # 下一层i依然可以取到s-=candidates[i]path.pop()candidates.sort()backtracking(candidates,0,target,0)return res
相关文章:
2024.5.2 —— LeetCode 高频题复盘
目录 151. 反转字符串中的单词129. 求根节点到叶节点数字之和104. 二叉树的最大深度101. 对称二叉树110. 平衡二叉树144. 二叉树的前序遍历543. 二叉树的直径48. 旋转图像98. 验证二叉搜索树39. 组合总和 151. 反转字符串中的单词 题目链接 class Solution:def reverseWords(s…...

ThreeJS:光线投射与3D场景交互
光线投射Raycaster 光线投射详细介绍可参考:https://en.wikipedia.org/wiki/Ray_casting, ThreeJS中,提供了Raycaster类,用于进行鼠标拾取,即:当三维场景中鼠标移动时,利用光线投射,…...

docker挂载数据卷-以nginx为例
目录 一、什么是数据卷 二、数据卷的作用 三、如何挂载数据卷 1、创建nginx容器挂载数据卷 2、查看数据卷 3、查看数据卷详情 4、尝试在宿主机修改数据卷 5、查看容器内对应的数据卷目录 6、 访问nginx查看效果 一、什么是数据卷 挂载数据卷本质上就是实…...
Docker-compose部署Fastapi项目
Docker-compose部署Fastapi、postgres、Redis、Nginx) 之前有写过使用容器部署的方式,这次尝试使用Docker-compose试一次大胆的尝试 使用容器的方式部署只是掌握这项技能的基础,在使用Docker-compose的过程中会有些稍许的不同。毕竟踩过的坑才算是跨过去…...

Eigen求解线性方程组
1、线性方程组的应用 线性方程组可以用来解决各种涉及线性关系的问题。以下是一些通常可以用线性方程组来解决的问题: 在实际工程和科学计算中,求解多项式方程的根有着广泛的应用。 在控制系统的设计中,我们经常需要求解特征方程的根来分析…...

7、Java基本数据类型的使用细节探讨(超详细版本)
Java基本数据类型的使用细节探讨 一、整数类型二、浮点数三、字符型四、布尔型 我觉得基本数据类型大家学计算机的应该都懂,但是韩顺平老师讲的基本类型的使用细节我觉得有必要记录一下,重新学的时候才发现有了新的感悟! 一、整数类型 使用细…...

MFC实现点击列表头进行排序
MFC实现点击列表头排序 1、添加消息处理函数 在列表窗口右键,类向导。选择 IDC_LIST1(我的列表控件的ID),消息选择LVN_COLUMNCLICK。 2、消息映射如下 然后会在 cpp 文件中生成以下函数 void CFLashSearchDlg::OnLvnColumnclic…...

用龙梦迷你电脑福珑2.0做web服务器
用龙梦迷你电脑福珑2.0上做web服务器是可行的。已将一个网站源码放到该电脑,在局域网里可以访问网站网页。另外通过在同一局域网内的一台windows10电脑上安装花生壳软件,也可以在外网访问该内网服务器网站网页。该电脑的操作系统属于LAMP。在该电脑上安装…...
秋招后端开发面试题 - JVM类加载机制
目录 JVM类加载机制前言面试题能说一下类的生命周期吗?类加载的过程知道吗?类加载器有哪些?什么是双亲委派机制?为什么要用双亲委派机制?如何破坏双亲委派机制?如何判断一个类是无用的类? JVM类…...
OceanBase 分布式数据库【信创/国产化】- OceanBase 配置项和系统变量概述
本心、输入输出、结果 文章目录 OceanBase 分布式数据库【信创/国产化】- OceanBase 配置项和系统变量概述前言OceanBase 数据更新架构OceanBase 配置项和系统变量概述配置项配置项分类配置项查询系统变量系统变量分类系统变量查询配置项与系统变量的区分OceanBase 分布式数据库…...

单单单单单の刁队列
在数据结构的学习中,队列是一种常用的线性数据结构,它遵循先进先出(FIFO)的原则。而单调队列是队列的一种变体,它在特定条件下保证了队列中的元素具有某种单调性质,例如单调递增或单调递减。单调队列在处理…...

电脑windows系统压缩解压软件-Bandizip
一、软件功能 Bandizip是一款功能强大的压缩和解压缩软件,具有快速拖放、高速压缩、多核心支持以及广泛的文件格式支持等特点。 Bandizip软件的功能主要包括: 1. 支持多种文件格式 Bandizip可以处理多种压缩文件格式,包括ZIP, 7Z, RAR, A…...

图片公式识别@文档公式识别@表格识别@在线和离线OCR工具
文章目录 abstract普通文字识别本地软件识别公式扩展插件下载小结 在线识别网站/API👺Quicker整合(推荐)可视化编辑和识别公式其他多模态大模型识别图片中的公式排版 开源模型 abstract 本文介绍免费图片文本识别(OCR)工具,包括普通文字识别,公式识别,甚至是手写公…...

Java高阶私房菜:JVM分代收集算法介绍和各垃圾收集器原理分解
目录 什么是分代收集算法 GC的分类和专业术语 什么是垃圾收集器 垃圾收集器的分类及组合 编辑 应关注的核心指标 Serial和ParNew收集器原理 Serial收集器 ParNew收集器 Parallel和CMS收集器原理 Parallel 收集器 CMS收集器 新一代垃圾收集器G1和ZGC G1垃圾收集器…...
为什么IB损失要在100epochs后再用?
在给定的代码中,参数start_ib_epoch用于控制从第几轮开始使用IB(Instance-Balanced)损失函数进行训练。具体来说,如果start_ib_epoch的值大于等于100,那么在训练的前100轮中将使用普通的交叉熵损失函数(CE&…...

《Video Mamba Suite》论文笔记(4)Mamba在时空建模中的作用
原文翻译 4.4 Mamba for Spatial-Temporal Modeling Tasks and datasets.最后,我们评估了 Mamba 的时空建模能力。与之前的小节类似,我们在 Epic-Kitchens-100 数据集 [13] 上评估模型在zero-shot多实例检索中的性能。 Baseline and competitor.ViViT…...

【备战软考(嵌入式系统设计师)】10 - 软件工程基础
这一部分的内容是概念比较多,不要理解,去感受。 涉及的知识点是嵌入式系统开发和维护的部分,也就是和管理相关的,而不是具体如何进行嵌入式系统开发的细节。 系统开发生命周期 按照顺序有下面几个阶段,我们主要要记…...

随手笔记-GNN(朴素图神经网络)
自己看代码随手写的一点备忘录,自己看的,不喜勿喷 GNN (《------ 代码) 刚开始我还在怀疑为什么没有加weigth bias,已经为什么权重才两个,原来是对node_feats进行的network的传播,而且自己内部直接进行了。 下面是一…...

C 语言指针怎么理解?
在今天的学习中,我注意到有位学员似乎对 C 语言指针的理解有些困惑。为了帮助大家更好地理解,我来举个例子。 C 语言指针就好比 Windows 桌面上常见的快捷方式。快捷方式可以指向某个游戏,这就是普通指针;它也可以指向另一个快捷…...
HTTP协议:通信机制、特点及实践应用
目录 前言 1. 运行机制 2. 通信方式 3. 主要特点 4. 统一资源标识符(URL) 5. HTTP报文 6. HTTP请求 7. HTTP响应 8. 实体 9. 持续连接 结语 前言 HTTP(Hypertext Transfer Protocol)是互联网上应用最广泛的一种协议&a…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...