当前位置: 首页 > news >正文

Java 7大排序

🐵本篇文章将对数据结构中7大排序的知识进行讲解


一、插入排序

有一组待排序的数据array,以升序为例,从第二个数据开始(用tmp表示)依次遍历整组数据,每遍历到一个数据都再从tmp的前一个数据开始(下标用j表示)从后往前依次和其进行比较,如果tmp比它小,则令array[j + 1] = array[j];

1.1 实例讲解

第一趟:


第二趟:

第三趟和第四躺:

1.2 代码实现

    public void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i - 1;for (; j >= 0; j--) {if (tmp < array[j]) {array[j + 1] = array[j]; //将tmp移动到当前数据顺序的最小位置处,此步操作相当于给tmp腾位置} else {break;}}array[j + 1] = tmp;}}

在该排序算法中,当tmp前面出现比其小的元素时,则再往前的数据也一定比tmp小,所以插入排序是元素越有序,其效率越快的排序算法

时间复杂度:O(N²)

空间复杂度:O(1)

稳定

二、希尔排序

希尔排序是对直接插入排序的优化,它会将一组数据进行分组,然后针对每一组进行直接插入排序,那么该如何进行分组:定义一个gap,代表同一组数据的间隔,比如由一组数据:6,5,4,3,2,1;gap = 2,则6,4,2为一组,5,3,1为一组。在gap = 2的情况下的每一组数据排序完毕后,要缩小gap并再进行分组,然后再对每一组进行插入排序,随着gap的减小,该组数据会变得越来越有序,当gap = 1时,此时数据已经接近有序了,所以效率会非常快 

2.1 实例讲解

第一躺:


第二趟:


第三趟:

2.2 代码实现

    public void shellSort(int[] array) {int gap = array.length;while(gap > 1) { //当gap = 1时分组结束gap = gap / 2;shell(array, gap);}}private void shell(int[] array, int gap) {for (int i = gap; i < array.length; i++) {int tmp = array[i];int j = i - gap;for (; j >= 0; j -= gap) {if (tmp < array[j]) {array[j + gap] = array[j];} else {break;}}array[j + gap] = tmp;}}

希尔排序不稳定

三、选择排序

选择排序较为简单,这里直接讲实例

3.1 实例讲解

第一躺:


第二趟:


第三趟:

第四躺和第五躺也都是如此排序的,由于数据已经有序,这里就不再演示

3.2 代码实现

    public void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;int j = i + 1;for (; j < array.length; j++) {if (array[j] < array[minIndex]) {minIndex = j;}}swap(array, minIndex, i);}}private void swap(int[] array, int minIndex, int i) {int tmp = array[minIndex];array[minIndex] = array[i];array[i] = array[minIndex];}

选择排序的效率不是很高,日常开发使用较少

时间复杂度:O(N²)

空间复杂度:O(1)

不稳定

四、堆排序

在上篇文章:Java优先级队列(堆)中进行了讲解,这里只给出代码:

4.1 代码实现

    public void createHeap(int[] array) { //创建大根堆int usedSize = array.length;for (int parent = (usedSize - 1 - 1) / 2; parent >= 0; parent--) {siftDown(array, parent, usedSize);}}private void siftDown(int[] array, int parent, int end) { //向下调整int child = 2 * parent + 1;while(child < end) {if (child + 1 < end && array[child] < array[child + 1]) {child++;}if (array[parent] < array[child]) {swap(array, parent, child);parent = child;child = 2 * parent + 1;} else {break;}}}private void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public void heapSort(int[] array) { //堆排序createHeap(array);int end = array.length - 1;while(end > 0) {swap(array, 0, end);siftDown(array, 0, end - 1);end--;}}

堆排序:

时间复杂度:O(N * logN)

空间复杂度:O(1)

不稳定

五、冒泡排序

冒泡排序在C语言阶段也进行了详细讲解,这里也只给出代码:

5.1 代码实现

    public void bubbleSort(int[] array) {for (int i = array.length - 1; i > 0; i--) {for (int j = 0; j < i; j++) {if (array[j] > array[j + 1]) {int tmp = array[j];array[j] = array[j + 1];array[j + 1] = tmp;}}}}

冒泡排序

时间复杂度:O(N²)

空间复杂度:O(1)

稳定

六、快速排序

6.1 实例讲解

以最左边的数作为基准,先从数组的最右边开始遍历,当找到比基准小的数时停止,然后从数组的最左边开始遍历,当找到比基准大的数时停止,这时将 l 和 r 所对应的值进行交换,之后重复上述过程直到 left 和 right 相遇,相遇的下标定义为pivot,最后将pivot下标的值和tmp进行交换

此时6的左边都是比其小的数,6的右边都是比其大的数;之后分别对6左边的数据和右边的数据进行重复的操作

之后再对这两组数据的pivot的两边进行重复操作,由此可以联想到使用递归,类似于二叉树

6.2 代码实现

    public void quickSort(int[] array) {quick(array, 0, array.length - 1);}private void quick(int[] array, int start, int end) {int pivot = partition(array, start, end); //通过paratition方法得到 left 和 right 相遇的下标 (paratition后续再实现)quick(array, start, pivot - 1); //递归 pivot 的左边quick(array, pivot + 1, end); //递归 pivot 的右边}

上述的 quick 方法中还缺少递归结束的条件,第一种不难想到就是left 和 right相遇时

第二种情况如下图:

上图的下一步是r = pivot - 1;开始递归pivot的左边,但其左边并没有数据,所以当left > right时结束递归

    public void quickSort(int[] array) {quick(array, 0, array.length - 1);}private void quick(int[] array, int start, int end) {if (start >= end) {return;}int pivot = partition1(array, start, end);quick(array, start, pivot - 1);quick(array, pivot + 1, end);}private int partition(int[] array, int left, int right) { //确定pivotint tmp = array[left]; //基准int i = left;while(left < right) {while(left < right && array[right] >= tmp) {right--;}while(left < right && array[left] <= tmp) {left++;}swap(array, left, right);}swap(array, i, right);return left;}

上述的 partition 确定pivot的下标被称为Hoare法,接下来再介绍一种 “挖坑法”

仍然是先从右边开始遍历,找到比tmp小的数则放在空出来的位置,此时right下标的位置就空出来了,然后从左边开始遍历找到比tmp大的数则放在空出来的位置,重复上述过程

// 挖坑法private int partition(int[] array, int left, int right) {int tmp = array[left];while(left < right) {while(left < right && array[right] >= tmp) {right--;}array[left] = array[right];while(left < right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}

6.3 快速排序的优化

一组数据在较为理想的情况下,每次找到的基准元素都可以将这组数据分为大致相等的两部分,此时的快速排序算法的时间复杂度为 O(nlogn) ,但是也会存在一些极端的情况:每次找到的基准元素都是这组数据的最大值或最小值,此时会出现"单分支"的情况,时间复杂度为O(n^2)

6.3.1 三数取中法

改优化方法主要针对趋于有序的待排数组(升序或逆序),比如有这样一组数据:1,2,3,4,5在每一次取基准元素之前,分别取该数组的第一个数,最后一个数和中间的数,取这三个数的中间大的数和第一个数进行交换,交换完后上述数组就会变成:3,2,1,4,5,这样就是上述提到的较为理想的情况

    private static void quick(int[] array, int start, int end) {if (start >= end) {return;}//如果待排数组趋于有序,则采用三数取中法进行优化int index = middleNum(array, start, end);swap (array, start, index);int pivot = partition(array, start, end);quick (array, start, pivot - 1);quick (array, pivot + 1, end);}

6.3.2 递归到小的子区间时,进行直接插入排序

之前有说道:待排数据的有序性越强,直接插入排序的效率越高,所以可以考虑当快排的递归深度较深或者说递归到的子区间较小时,采用直接插入排序,这样也可以提升快速排序的效率

    private static void quick(int[] array, int start, int end) {if (start >= end) {return;}//如果区间较小,则使用这种优化if (end - start + 1 <= 10) {insertSort(array, start, end);return;}int pivot = partition(array, start, end);quick (array, start, pivot - 1);quick (array, pivot + 1, end);}public static void insertSort(int[] array, int start, int end) { //这里不能只传数组,因为并不是对整个数组进行插入排序,而是某一个子区间进行直接插入排序for (int i = start + 1; i <= end; i++) { //由于只是对特定的区间进行插入排序,所以这里要限定空间int tmp = array[i];int j = i - 1;for (; j >= start; j--) { // >=startif (array[j] > tmp) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}

快速排序时间复杂度:最好:O(N*logN),最坏:O(N²),平均:O(N*logN)

空间复杂度:O(logN)

不稳定

七、归并排序

7.1 实例讲解

归并排序是先将待排数组递归的进行两两分组,直到每组只有一个元素,之后两两递归的进行有序合并

7.2 代码实现

先进行分解

    public static void mergeSort (int[] array) {//将待排数组进行分解mergeFunc(array, 0, array.length - 1);}private static void mergeFunc (int[] array, int left, int right) {if (left >= right) {return;}int mid = left + ((right - left) >> 1); //得到改组数据的中间下标//分别分解数组的左边和右边mergeFunc (array, left, mid);mergeFunc (array, mid + 1, right);//将分解后的数组进行 二路归并merge (array, left, mid, right);}

之后进行合并,以下面这一组为例:

将上面这两组数据进行有序合并,可以给这两组数据的第一个元素和最后一个元素的下标分别定义为s1,e1,s2,e2;之后再创建一个数组tmpArr,每次比较s1和s2的值,并将较小的值放在tmpArr中,(如果s1的值较小则s1++,反之s2++),然后将tmpArr中的数据再拷贝到原数组中

    private static void merge (int[] array, int left, int mid, int right) {int s1 = left;int e1 = mid;int s2 = mid + 1;int e2 = right;int[] tmpArr = new int[right - left + 1];int k = 0;//1.保证两个表都有数据while (s1 <= e1 && s2 <= e2) {if (array[s1] < array[s2]) {tmpArr[k++] = array[s1++];} else {tmpArr[k++] = array[s2++];}}//2.上个循环走完之后,可能还有一个表的数据没有全部放到tmpArr中while (s1 <= e1) {tmpArr[k++] = array[s1++];}while (s2 <= e2) {tmpArr[k++] = array[s2++];}//3.将tmpArr中的数据拷贝回原数组中for (int i = 0; i < k; i++) {array[i + left] = tmpArr[i]; //array[i + left]是因为合并的两组数据不一定是原数组的0下标开始}}

时间复杂度:O(N*logN)

空间复杂度:O(N)

不稳定


🙉本篇文章到此结束

相关文章:

Java 7大排序

&#x1f435;本篇文章将对数据结构中7大排序的知识进行讲解 一、插入排序 有一组待排序的数据array&#xff0c;以升序为例&#xff0c;从第二个数据开始&#xff08;用tmp表示&#xff09;依次遍历整组数据&#xff0c;每遍历到一个数据都再从tmp的前一个数据开始&#xff0…...

vue3 - 图灵

目录 vue3简介整体上认识vue3项目创建Vue3工程使用官方脚手架创建Vue工程[推荐] 主要⼯程结构 数据双向绑定vue2语法的双向绑定简单表单双向绑定复杂表单双向绑定 CompositionAPI替代OptionsAPICompositionAPI简单不带双向绑定写法CompositionAPI简单带双向绑定写法setup简写⽅…...

java设计模式八 享元

享元模式&#xff08;Flyweight Pattern&#xff09;是一种结构型设计模式&#xff0c;它通过共享技术有效地支持大量细粒度的对象。这种模式通过存储对象的外部状态在外部&#xff0c;而将不经常变化的内部状态&#xff08;称为享元&#xff09;存储在内部&#xff0c;以此来减…...

ELK原理详解

ELK原理详解 一、引言 在当今日益增长的数据量和复杂的系统环境中&#xff0c;日志数据的收集、存储、分析和可视化成为了企业运营和决策不可或缺的一部分。ELK&#xff08;Elasticsearch、Logstash、Kibana&#xff09;堆栈凭借其高效的性能、灵活的扩展性和强大的功能&…...

多线程学习Day09

10.Tomcat线程池 LimitLatch 用来限流&#xff0c;可以控制最大连接个数&#xff0c;类似 J.U.C 中的 Semaphore 后面再讲 Acceptor 只负责【接收新的 socket 连接】 Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】 一旦可读&#xff0c;封装一个任务对象&#x…...

第33次CSP认证Q1:词频统计

&#x1f344;题目描述 在学习了文本处理后&#xff0c;小 P 对英语书中的 &#x1d45b;n 篇文章进行了初步整理。 具体来说&#xff0c;小 P 将所有的英文单词都转化为了整数编号。假设这 &#x1d45b;n 篇文章中共出现了 &#x1d45a;m 个不同的单词&#xff0c;则把它们…...

pytorch加载模型出现错误

大概的错误长下面这样&#xff1a; 问题出现的原因&#xff1a; ​很明显&#xff0c;我就是犯了第一种错误。 网上的修改方法&#xff1a; 我觉得按道理哈&#xff0c;确实&#xff0c;蓝色部分应该是可以把问题解决了的​。​但是我没有解决&#xff0c;因为我犯了另外一个错…...

如何在Mac上恢复格式化硬盘的数据?

“嗨&#xff0c;我格式化了我的一个Mac硬盘&#xff0c;而没有使用Time Machine备份数据。这个硬盘被未知病毒感染了&#xff0c;所以我把它格式化为出厂设置。但是&#xff0c;我忘了备份我的文件。现在&#xff0c;我想恢复格式化的硬盘驱动器并恢复我的文档&#xff0c;您能…...

华为OD机试 - 手机App防沉迷系统(Java 2024 C卷 100分)

华为OD机试 2024C卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷C卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;每一题都有详细的答题思路、详细的代码注释、样例测试…...

搜维尔科技:光学动作捕捉系统用于城市公共安全智慧感知实验室

用户名称&#xff1a;西安科技大学 主要产品&#xff1a;Optitrack Priime41 光学动作捕捉系统&#xff08;8头&#xff09; 在6米8米的空间内&#xff0c;通过8个Optitrack Priime41光学动作捕捉镜头&#xff0c;对人体动作进行捕捉&#xff0c;得到用户想要的人体三维空间坐…...

保研面试408复习 4——操作系统、计网

文章目录 1、操作系统一、文件系统中文件是如何组织的&#xff1f;二、文件的整体概述三、UNIX外存空闲空间管理 2、计算机网络一、CSMA/CD 协议&#xff08;数据链路层协议&#xff09;二、以太网MAC帧MTU 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 1、…...

实战攻防中关于文档的妙用

一、PPT钓鱼 简单制作一个用于钓鱼的PPTX文件 一般那种小白不知道PPT也能拿来钓鱼&#xff0c;这里主要是借用PPT中的”动作按钮”, 我们在插入的地方&#xff0c;选择“动作按钮” 然后在弹出的窗口处&#xff1a; 比如填入上线CS的语句&#xff1a;powershell.exe -nop -w …...

【使用ChatGPT的API之前】OpenAI API提供的可用模型

文章目录 一. ChatGPT基本概念二. OpenAI API提供的可用模型1. InstructGPT2. ChatGPT3. GPT-4 三. 在OpenAI Playground中使用GPT模型-ing 在使用GPT-4和ChatGPT的API集成到Python应用程序之前&#xff0c;我们先了解ChatGPT的基本概念&#xff0c;与OpenAI API提供的可用模型…...

【C语言】模拟实现深入了解:字符串函数

&#x1f525;引言 本篇将模拟实现字符串函数&#xff0c;通过底层了解更多相关细节 &#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言笔记专栏&#xff1a;C语言笔记 &#x1f308;C笔记专栏&#xff1a; C笔记 &#x1f308;喜欢的诗句:无人扶我青云志 我自…...

钩子函数onMounted定义了太多访问MySQL的操作 导致数据库异常

先放几种后端遇到的异常&#xff0c;多数和数据库有关 pymysql.err.InternalError: Packet sequence number wrong - got 102 expected 1 127.0.0.1 - - [09/May/2024 17:49:37] "GET /monitorLastTenList HTTP/1.1" 500 AttributeError: NoneType object has no at…...

Excel文件解析---超大Excel文件读写

1.使用POI写入 当我们想在Excel文件中写入100w条数据时&#xff0c;使用XSSFWorkbook进行写入时会发现&#xff0c;只有将100w条数据全部加载到内存后才会用write()方法统一写入&#xff0c;效率很低&#xff0c;所以我们引入了SXXFWorkbook进行超大Excel文件读写。 通过设置 …...

TypeScript基础:类型系统介绍

TypeScript基础&#xff1a;类型系统介绍 引言 TypeScript&#xff0c;作为JavaScript的一个超集&#xff0c;引入了类型系统&#xff0c;这为开发大型应用程序带来了诸多好处。本文将介绍TypeScript类型系统的基础知识&#xff0c;帮助初学者理解其概念和用法。 基础知识 …...

【Unity】Unity项目转抖音小游戏(一) 项目转换

UnityWEBGL转抖音小游戏流程 业务需求&#xff0c;开始接触一下抖音小游戏相关的内容&#xff0c;开发过程中记录一下流程。 相关参考&#xff1a; 抖音文档&#xff1a;https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/guide/game-engine/rd-to-SC…...

element-ui 中修改loading加载样式

element-ui 中的 loading 加载功能&#xff0c;默认是全屏加载效果 设置局部&#xff0c;需要自定义样式或者修改样式&#xff0c;方法如下&#xff1a; import { Loading } from element-uiVue.prototype.$baseLoading (text) > {let loadingloading Loading.service({…...

QT登录界面,(页面的切换)

以登陆界面为例&#xff0c;&#xff08;QDialog&#xff09; 1.主界面先构造login 的对话框类 int main(int argc, char *argv[]) {QApplication a(argc, argv);//先显示Login的界面Study_Login_Dialog login;............ }2.Login的类&#xff0c;可以用自定义的信号&#…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...