【线性代数】俗说矩阵听课笔记
基础解系的概念

线性方程组的解

21行列式和矩阵秩Rank的等价刻画
子式


标准型
利用子式求解矩阵的rank

24零积秩不等式


齐次线性方程组的基础解系


rank的两个重要结论

¥25伴随矩阵的rank

奇异矩阵:行列式=0的矩阵



31线性相关,线性无关,拓展与证明
n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。
n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。

¥

32极大线性无关组



33向量组的等价




34线性空间基变换

待研究的内容:
1线性无关向量的正交化
2矩阵的特征值和特征向量
3相似矩阵和相似对角化
4二次型及标准二次型
¥35单位正交基向量
两个向量的数量积等于0,则称两者正交或者垂直

研究它的原因:正交基向量,单位正交基向量有非常良好的性质

36斯密特正交化



37特征值和特征向量
概念篇


计算篇
性质篇
引用篇
39特征值和特征向量的性质






40特征值和特征向量的计算例题
求特征值和特征向量的步骤

特征值和特征向量的关系

特征值和特征向量的性质

【补充】linear algebra and its applicationsCH4 vector spaces
4.1vector spaces and subspaces
4.2null spaces,column spaces, and linear transformation
4.3linear independent set:bases
4.4coordinate systems
4.5the dimension of a vector space
4.6rank
4.7change of basis
4.8applications to different equations
4.9applications to markov chains
41相似矩阵
相关文章:
【线性代数】俗说矩阵听课笔记
基础解系的概念 线性方程组的解 21行列式和矩阵秩Rank的等价刻画 子式 标准型 利用子式求解矩阵的rank 24零积秩不等式 齐次线性方程组的基础解系 rank的两个重要结论 ¥25伴随矩阵的rank 奇异矩阵:行列式0的矩阵 31线性相关,线性无关&#…...
物联网技术在数字化工厂中的应用,你知道多少?——青创智通
工业物联网解决方案-工业IOT-青创智通 物联网(IoT)技术在数字化工厂的应用正日益成为工业革命的重要推动力。随着科技的飞速发展,物联网技术不断革新,其在数字化工厂中的应用也呈现出愈发广泛和深入的态势。本文将详细探讨物联网…...
nacos开启登录开关启动报错“Unable to start embedded Tomcat”
nacos 版本:2.3.2 2.2.2版本之前的Nacos默认控制台,无论服务端是否开启鉴权,都会存在一个登录页;在之后的版本关闭了默认登录页面,无需登录直接进入控制台操作。在这里我们可以在官网可以看到相关介绍 而我现在所用的…...
Linux|了解如何使用 awk 内置变量
引言 当我们揭开 Awk 功能部分时,我们将介绍 Awk 中内置变量的概念。您可以在 Awk 中使用两种类型的变量:用户定义的变量和内置变量。 内置变量的值已经在 Awk 中定义,但我们也可以仔细更改这些值,内置变量包括: FILEN…...
代码随想录-算法训练营day29【回溯算法05:递增子序列、全排列】
代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 第七章 回溯算法part05* 491.递增子序列 * 46.全排列 * 47.全排列 II详细布置 491.递增子序列 本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 https://programmercarl.com…...
704. 二分查找
Problem: 704. 二分查找 🐷我的leetcode主页 文章目录 题目分类思路什么是二分查找如何理解时间复杂度 解题方法Code 题目 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target&a…...
php回车变br、php显示br
在 PHP 中,如果你想将回车符(\n)转换为 HTML 的 <br> 标签来实现换行显示,可以使用内置函数 nl2br()。这个函数会将文本中的换行符替换为 <br> 标签。以下是使用 nl2br() 函数的示例代码: <?php $tex…...
找最大数字-第12届蓝桥杯国赛Python真题解析
[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第60讲。 找最大数字&#…...
蓝桥杯 算法提高 ADV-1170 阶乘测试 python AC
找规律题,遍历i中有几个m就加几,和m的多少次数有关 第一版👇 try:while True:n, m map(int, input().split())ll [i for i in range(1, n 1) if i % m 0]ans len(ll)M mwhile ll:lll []M * mfor i in ll:if i % M 0:lll.append(i)a…...
阿里巴巴杭州全球总部正式启用,创新“减碳大脑”科技减碳 | 最新快讯
来源:封面新闻 封面新闻记者付文超 5 月 10 日,记者获悉,位于未来科技城的阿里巴巴杭州全球总部新园区正式启用,这是阿里巴巴目前最大的综合性办公园区。从空中俯瞰,园区正中央呈现阿里标志性的笑脸 logo,这…...
蓝桥杯国赛练习题真题Java(矩阵计数)
题目描述 一个 NM 的方格矩阵,每一个方格中包含一个字符 O 或者字符 X。 要求矩阵中不存在连续一行 3 个 X 或者连续一列 3 个 X。 问这样的矩阵一共有多少种? 输入描述 输入一行包含两个整数 N,M (1≤N,M≤5)。 输出描述 输出一个整数代表答案。…...
概念解析 | ROC曲线:评估分类模型
注1:本文系"概念解析"系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:ROC曲线的含义和绘制 概念解析 | ROC曲线:评估分类模型 第一部分:通俗解释 在我们的日常生活中,经常会遇到需要做出判断和选择的情况。比如,当你收到一封邮件时…...
数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)
绪论 千里之行始于足下;继续坚持 1.对比Python和numpy的性能 使用魔法指令%timeit进行对比 需求: 实现两个数组的加法数组 A 是 0 到 N-1 数字的平方数组 B 是 0 到 N-1 数字的立方 import numpy as np def numpy_sum(text_num):"""…...
【Java EE】数据库连接池详解
文章目录 🎍数据库连接池🌸Hikari🌸Druid 🍀MySQL开发企业规范⭕总结 🎍数据库连接池 在上⾯Mybatis的讲解中,我们使⽤了数据库连接池技术,避免频繁的创建连接,销毁连接 下⾯我们来了解下数据库连接池 数据库连接池负…...
正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-15.4讲 GPIO中断实验-IRQ中断服务函数详解
前言: 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM(MX6U)裸机篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…...
如何平衡RPA机器人的安全性与业务敏捷性,同时不牺牲用户体验?
平衡RPA机器人的安全性与业务敏捷性,同时不牺牲用户体验,是RPA实施中的一个关键挑战。以下是一些策略和最佳实践: ### 1. 安全设计原则 从设计阶段就将安全性纳入考虑,遵循安全设计原则。这意味着在开发RPA解决方案时࿰…...
地球行星UE5和UE4
地球行星,包含多种地球风格,可蓝图控制自转和停止,可材质自转. 支持版本4.21-5.4版本 下载位置:https://mbd.pub/o/bread/ZpWZm5lv b站工坊:https://gf.bilibili.com/item/detail/1105582041 _______________________…...
7.k8s中的名称空间namespace
目录 一、Namespace(命名空间) 二、查看系统的名称空间 1.查看系统中的名称空间列表 2.单独查看一个名称空间下的对应资源 三、名称空间的管理 1.创建名称空间 1.1响应式创建 1.2声明式创建 2.删除名称空间 四、资源引用名称空间 一、Namespace(命名空间) 命名空间(Name…...
上海企业源代码防泄密解决方案,企业源代码防泄密如何应对?
随之互联网的发展,企业员工因离职把企业源代码泄露或删库跑路的事情屡见不鲜,各大互联网公司基本都会出现源代码泄露的事情,这样的问题也成了企业在发展过程中不可避免的问题。企业源代码泄露会给企业带来的损失也是不可估量的,据…...
将要上市的自动驾驶新书《自动驾驶系统开发》中摘录各章片段 4
第十三章 车联网 数字化设备正变得越来越普遍并且相互联系。这些设备向数字生态系统智能部分的演进创造了迄今为止尚未解决安全问题的新颖应用。一个特定的例子是车辆,随着车辆从简单的交通方式发展到具有新的感知和通讯功能的智能实体,就成为智能城市的…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

