将要上市的自动驾驶新书《自动驾驶系统开发》中摘录各章片段 4
第十三章 车联网
数字化设备正变得越来越普遍并且相互联系。这些设备向数字生态系统智能部分的演进创造了迄今为止尚未解决安全问题的新颖应用。一个特定的例子是车辆,随着车辆从简单的交通方式发展到具有新的感知和通讯功能的智能实体,就成为智能城市的活跃成员。
在第三章3.1.7节已经简单介绍了车联网(V2X)的基础,即DSRC和Cellular-V2X通信技术。车联网包括通过V2V(车对车),V2I(车对基础设施)和V2P(车对行人)交互而与公共网络进行通信的车辆,其收集和实时共享有关路网状况的关键信息。
使用车载单元,车辆可以彼此(V2V)和与路边单元(V2I)进行通信。这可以实现多种其他形式的通信,例如车对宽带云(V2B)(其中车与监视数据中心进行通信),车对人(V2H)这种脆弱的道路使用者即行人或自行车进行通信,或者车辆对传感器(V2S)即车辆与环境中嵌入的传感器进行通信。
对于自动驾驶的车辆而言,和高清地图的作用类似,车联网本身就是一种传感器的延伸,可以看成为“传感器”。
与自动驾驶技术中常用的摄像头或激光雷达相比,V2X技术具备突破视觉死角和跨越遮挡物获取信息的能力,同时也可以和其他车辆及设施共享实时驾驶状态信息,还可以通过研判算法产生预测信息。另外,V2X是唯一不受天气状况影响的“传感器”技术,无论雨、雾或强光照射都不会影响其正常工作。因此V2X技术广泛应用于交通运输尤其是自动驾驶领域。
本章介绍车联网在自动驾驶应用的技术。13.1讨论智能网联汽车(CAV)的发展;13.2介绍车联网的社交特性及其AI元素;13.3对各种边缘计算进行分析;13.4则讨论车辆-路端的协同方法;13.5介绍车辆通过车联网进行协同感知的技术;13.6讨论编组车队的规划与控制。
关于感知协同的分析片段:
“
第十四章 神经渲染
合成照片级逼真的图像和视频是计算机图形学的核心,也是几十年来研究的焦点。传统意义上,场景的合成图像是用渲染算法(如光栅化或光线跟踪)生成的,这些算法将特别定义的几何和材质属性表示作为输入。总的来说,这些输入定义了实际场景和渲染的内容,称为场景表征(场景由一个或多个目标组成)。用可微分渲染的损失函数从观测中重建这样的场景表征被称为逆图形学或逆渲染。
神经渲染是一个迅速兴起的领域,它可以紧凑地表示场景,通过神经网络从现有的观察中学习渲染。神经渲染的主要思想是将经典(基于物理学的)计算机图形学的见解与深度学习的最新进展相结合。与经典计算机图形学类似,神经渲染的目标是以一种可控的方式生成照片般真实的图像。例如,新视点合成、重打光、场景变形和合成。
"神经渲染 "这个术语经常被用于两个不同的概念。第一种范式,是神经网络被训练为从一些2-D输入信号(如语义标签或栅格化的智体几何)直接映射到输出图像,即把神经网络训练为一个渲染引擎。而另外一种范式,是一个神经网络代表一个特定场景的形状或外观,并且代表用一个传统的图形 "引擎 "进行渲染,是以分析而不是学习方式去定义。与之前的范式不同,这个神经网络并不学习如何渲染,而是学习以3-D方式表征一个场景,然后根据图像生成的物理学原理渲染该场景。神经辐射场(NeRF)就是这样的技术之一,其利用体渲染生成场景图像。
本章14.1是原始NeRF理论介绍,14.2讨论NeRF的加速方法,包括自动积分(AutoInt)方法和Plenoxels模型,而14.3是讨论动态场景的渲染技术,在14.4分析重打光方法, 14.5介绍NeRF的泛化问题,最后14.6介绍最新的质量改进方法。
关于NeRF的泛化分析片段:
‘
第十五章 扩散模型
给定感兴趣分布的观测样本x,生成模型的目标是学习对其真实数据分布p(x)建模。一旦完成学习,可以根据该近似模型随意生成新的样本。此外,在某些公式下,能够用学习模型来评估观测或采样数据的似然。
生成对抗网络(GAN)对复杂分布的采样过程进行建模,以对抗方式学习。另一类生成模型被称为“基于似然”,试图学习一种为观测数据样本分配一个高似然的模型,包括自回归(AR)模型、归一化流(NF)和变分自编码器(VAE)。有一种类似的方法,是基于能量的建模(EBM),其中一个分布被学习为一个任意灵活的能量函数,然后归一化。
深度学习中生成模型类根据隐含参数随机生成观测结果。然而,目前的生成模型面临四大问题,即生成过程缓慢(采样效率低)、数据处理类型单一(泛化能力弱)、次优的似然和模型需要降维等。
最近,扩散模型凭借其强大的生成能力,成为生成模型的热门之一。应用领域包括计算机视觉、语音生成、生物信息学和自然语言处理等。
迄今为止,在计算机视觉领域中,扩散模型已被应用于各种生成式建模任务,如图像生成(image generation)、图像超分(mage super-resolution)、图像修复(image inpainting)、图像编辑(image editing)和图像翻译(image-to-image translation)等。此外,扩散模型学习的潜表征在鉴别性任务中也很有用,例如图像分割、分类和异常检测。
扩散概率模型最初是由非平衡热力学(non-equilibrium thermodynamics)启发而提出的潜变量生成模型。这类模型由两个过程组成,第一个是正向过程,在多个尺度上添加噪声,逐步干扰数据分布。然后,第二个是反向过程,学习恢复数据结构。
本章涉及扩散模型的理论和应用。15.1讨论带Langevin动力学的基于分数生成网络;15.2介绍去噪扩散概率模型;15.3分析去噪扩散隐式模型(DDIMs);15.4则讨论封装以前方法的SDE框架;15.5介绍扩散模型在图像和视频合成的应用;15.6讨论另一个应用图像-图像翻译;15.7介绍扩散模型的应用文本-图像/视频生成; 15.8总结扩散模型的一些改进方法。
关于文本-到-图像/视频合成的讨论片段:
“
—完----
相关文章:

将要上市的自动驾驶新书《自动驾驶系统开发》中摘录各章片段 4
第十三章 车联网 数字化设备正变得越来越普遍并且相互联系。这些设备向数字生态系统智能部分的演进创造了迄今为止尚未解决安全问题的新颖应用。一个特定的例子是车辆,随着车辆从简单的交通方式发展到具有新的感知和通讯功能的智能实体,就成为智能城市的…...

OpenSearch 与 Elasticsearch:7 个主要差异及如何选择
OpenSearch 与 Elasticsearch:7 个主要差异及如何选择 1. 什么是 Elasticsearch? Elasticsearch 是一个基于 Apache Lucene 构建的开源、RESTful、分布式搜索和分析引擎。它旨在处理大量数据,使其成为日志和事件数据管理的流行选择。 Elasti…...

[Docker]容器的网络类型以及云计算
目录 知识梗概 1、常用命令2 2、容器的网络类型 3、云计算 4、云计算服务的几种主要模式 知识梗概 1、常用命令2 上一篇已经学了一些常用的命令,这里补充两个: 导出镜像文件:[rootdocker ~]# docker save -o nginx.tar nginx:laster 导…...

VMP 简单源码分析(.net)
虚拟机 获取CPU的型号 实现了一个指令集解释器,每个操作码对应一个特定的处理函数,用于执行相应的指令操作。在执行字节码时,解释器会根据操作码查找并调用相应的处理函数来执行指令。 截获异常 先由虚拟机处理 处理不了再抛出异常 priva…...

数据结构与算法学习笔记-二叉树的顺序存储表示法和实现(C语言)
目录 前言 1.数组和结构体相关的一些知识 1.数组 2.结构体数组 2.二叉树的顺序存储表示法和实现 1.定义 2.初始化 3.先序遍历二叉树 4.中序遍历二叉树 5.后序遍历二叉树 6.完整代码 前言 二叉树的非递归的表示和实现。 1.数组和结构体相关的一些知识 1.数组 在C语…...
如何在Windows和Linux中杀死Python进程
在开发和运行Python脚本的过程中,有时我们需要强制结束正在运行的Python进程。这可能是因为脚本运行出现了不可预见的错误,或者我们需要停止一个长时间执行的任务。无论原因如何,了解如何在不同操作系统中正确、安全地终止Python进程都是一项…...

零基础怎么快速进行单细胞分析?
近一段时间正在努力学习单细胞相关的理论知识,发现单细胞测序和普通的真核细胞的转录组非常相似。两者之间的最大的区别在于,一个测的是单个细胞的表达,一个测的是一堆细胞的表达之和。所以从这里就可以理解,为什么网上很多教程都…...
力扣数据库题库学习(5.10日)--1965. 丢失信息的雇员
1965. 丢失信息的雇员 问题链接🐷 思路分析 先看问题的描述 编写解决方案,找到所有 丢失信息 的雇员 id。当满足下面一个条件时,就被认为是雇员的信息丢失:雇员的 姓名 丢失了,或者雇员的 薪水信息 丢失了返回这些…...

漫威争锋Marvel Rivals怎么搜索 锁区怎么搜 游戏搜不到怎么办
即将问世的《漫威争锋》(Marvel Rivals)作为一款万众期待的PvP射击游戏新星,荣耀携手漫威官方网站共同推出。定档5月11日清晨9时,封闭Alpha测试阶段将正式揭开序幕,持续时间长达十天之久。在此首轮测试窗口,…...

SpringBoot实现统一返回值+全局异常处理
在这里首先感谢的就是程序员老罗,从他的项目里面学到了这些东西。 首先就是去创建一个SpringBoot项目,这里我就不多做赘述了 封装一个统一返回对象 package com.example.demo.vo;public class ResponseVO<T> {private String status;private In…...

windows连接CentOS数据库或Tomcat报错,IP通的,端口正常监听
错误信息 数据库错误: ERROR 2003 (HY000): Cant connect to MySQL server on x.x.x.x (10060) Tomcat访问错误: 响应时间过长 ERR_CONNECTION_TIMED_OUT 基础排查工作 【以下以3306端口为例,对于8080端口来说操作是一样的,只需…...

超详细的胎教级Stable Diffusion使用教程(一)
这套课程分为五节课,会系统性的介绍sd的全部功能和实操案例,让你打下坚实牢靠的基础 一、为什么要学Stable Diffusion,它究竟有多强大? 二、三分钟教你装好Stable Diffusion 三、小白快速上手Stable Diffusion 四、Stable dif…...
流媒体服务器(20)—— mediasoup 之媒体流score评分计算(一)
目录 前言 正文 《流媒体服务器》专栏总览丨蓄力计划_开源流媒体服务器对比-CSDN博客 前言 mediasoup 有一套评估媒体传输通道优劣的机制,主要是通过 score 评分来判断的。今天就先介绍一下这个机制的大体逻辑,后面的文章再详细介绍具体计算的算法。 正文 mediasoup 的…...

用keras识别狗狗
一、需求场景 从照片从识别出狗狗 from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np# 加载预训练的ResNet50模型 model ResNet5…...

Sass语法介绍-变量介绍
02 【Sass语法介绍-变量】 sass有两种语法格式Sass(早期的缩进格式:Indented Sass)和SCSS(Sassy CSS) 目前最常用的是SCSS,任何css文件将后缀改为scss,都可以直接使用Sassy CSS语法编写。 所有有效的 CSS 也同样都是有效的 SCSS。 Sass语…...

可调恒流电子负载的基础认识
可调恒流电子负载是模拟真实负载的电子设备,它可以模拟各种不同类型和功率的负载。这种设备的主要功能是接收电源输入,然后以恒定的电流输出,以便对电源或电池进行测试和校准。 首先,我们需要了解什么是恒流,恒流是指在…...
开源模型应用落地-模型记忆增强-概念篇(一)
一、前言 语言模型的记忆是基于其训练数据。具体而言,对于较长的文本,模型可能会遗忘较早的信息,因为它的记忆是有限的,并且更容易受到最近出现的内容的影响。模型无法跨越其固定的上下文窗口,而是根据当前上下文生成回应。 提升模型记忆能力有多种方法,比如改进模型的结…...

SAPUI5基础知识1 - 概览,库,支持工具,自学教程
1. SAPUI5 概览 1.1 SAPUI5 SAPUI5是一种用于构建企业级Web应用程序的开发框架。它是由SAP开发的,基于HTML5、CSS3和JavaScript技术。 SAPUI5提供了一套丰富的UI控件和工具,使开发人员能够快速构建现代化、可扩展和可定制的应用程序。 它还提供了数据…...
常见的获取dom元素的方法
获取 DOM 元素是前端开发中非常常见的操作。以下是几种常用的方法来获取 DOM 元素,以及它们的适用场景和示例: 1. getElementById 用于获取具有指定 id 属性的元素。 示例 let element document.getElementById(myId); 2. getElementsByClassName …...

走进CHEN MEI HUA的设计哲学:书写东方女性力量与态度的时尚篇章
在时尚的舞台中央,品牌不止是商品,更是故事的讲述者、文化的传承者。CHEN MEI HUA,一个源自中国上海的高端女装品牌,以其独特的设计理念及文化内核,成为了时尚界一颗耀眼的明珠。今天,让我们一起走进CMH的世…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...