当前位置: 首页 > news >正文

每天五分钟深度学习:数学中的极值

本文重点

在数学领域中,极值是一个极其重要的概念,它不仅在纯数学理论研究中占据核心地位,而且在工程、物理、经济等实际应用领域也发挥着不可替代的作用。极值问题涉及函数的最大值和最小值,是微积分学中的一个基本问题。本文旨在详细介绍数学中的极值概念、性质、求解方法以及其在各个领域的应用。

极值的定义与性质

极值的定义

极值是指函数在某一区间内,当自变量取某一特定值时,函数值达到最大或最小。具体来说,如果函数f(x)在x=c处的函数值大于或等于其邻近的所有值,则称f(c)是函数f(x)的局部最大值;如果函数f(x)在x=c处的函数值小于或等于其邻近的所有值,则称f(c)是函数f(x)的局部最小值。如果在整个定义域内,f(c)都是最大的或最小的,则称f(c)是函数f(x)的全局最大值或全局最小值。

极值的性质

极值具有以下基本性质:

(1)极值点处的一阶导数等于零(或不存在)。这是因为如果函数在某点处可导且取得极值,则该点处的一阶导数必须为零。然而,一阶导数等于零的点并不一定是极值点,也可能是拐点或其他类型的点。

(2)极值点处的二阶导数可以用来判断极值的类型。如果函数在某点处二阶导数大于零,则该点是局部最小值;如果二阶导数小于零,则该点是局部最大值。这一性质在求解极值问题时非常有用。

极值问题

相关文章:

每天五分钟深度学习:数学中的极值

本文重点 在数学领域中,极值是一个极其重要的概念,它不仅在纯数学理论研究中占据核心地位,而且在工程、物理、经济等实际应用领域也发挥着不可替代的作用。极值问题涉及函数的最大值和最小值,是微积分学中的一个基本问题。本文旨在详细介绍数学中的极值概念、性质、求解方…...

【Linux】Linux——Centos7安装Tomcat

1.下载Tomcat 安装包 官网地址:Apache Tomcat - Apache Tomcat 9 Software Downloadshttps://tomcat.apache.org/download-90.cgi 2.将下载的安装包上传到 Xftp 上,我是直接放到 usr 下了 3.将安装包解压到 /usr/local/ tar -zxvf apache-tomcat-9.0.8…...

SpringBoot+vue实现右侧登录昵称展示

目录 1. 定义User数据 1.1.在created方法获取数据 1.2.头部导航栏绑定User数据 1.3.在data中定义User数据 2. 获取数据 2.1.接收父组件传递的值 2.2.展示数据 3. 页面效果 在SpringBoot和 Vue.js 结合的项目中实现右侧登录昵称展示,通常涉及到前端的用户界面…...

【网络原理】UDP协议 | UDP报文格式 | 校验和 | UDP的特点 | 应用层的自定义格式

文章目录 一、UDP协议1.UDP的传输流程发送方接收方 2.UDP协议报文格式:长度受限校验和如何校验:CRC算法:循环冗余算法md5算法: 2.UDP的特点 二、开发中常见的自定义格式1.xml(古老)2.json(最流行…...

NodeJs入门知识

**************************************************************************************************************************************************************************** 1、配置Node.js与npm下载(精力所致,必有精品) …...

代码随想录学习Day 34

62.不同路径 题目链接 讲解链接 动归五部曲: 1.确定dp数组及其下标的含义:dp[i][j]的含义是从(0, 0)走到(i, j)所需的步数; 2.确定递推公式:因为只能往右或者往下,所以dp[i][j] dp[i - 1][j] dp[i][j - 1]。 3.…...

由于找不到MSVCP120D.dll,无法继续执行代码。重新安装程序可能会解决此问题

由于找不到MSVCP120D.dll,无法继续执行代码。重新安装程序可能会解决此问题 一、问题详细描述二、问题产生背景三、问题原因四、解决办法1、安装缺少的库2、直接更换更高版本的opencv 五、vs版本对应vc1、版本对应2、vs对应vc查看方法 一、问题详细描述 同样可能会报 &#xff…...

【前端】输入时字符跳动动画实现

输入时字符跳动动画实现 在前端开发中,为了提升用户体验,我们经常需要为用户的交互行为提供即时的反馈。这不仅让用户知道他们的操作有了响应,还可以让整个界面看起来更加生动、有趣。本文将通过一个简单的例子讲解如何实现在用户输入字符时…...

C语言面试重点问题

1. 冒泡排序法 2. strlen、strcpy、strcat、strcmp的用法和原理 3. 大小端的区分 3.1 主函数区分大小端 #include <stdio.h>int main(void) {int num 0x11223344;char *p (char *)&num;if (0x11 *p){printf("大端!\n");}else if (0x44 *p){printf(…...

antlr4略解

文章目录 1. antlr4是用来干什么的&#xff1f;2. 什么是lexer和parser&#xff1f;3. 使用antlr4生成某语言的lexer和parser的具体过程4. 其他 1. antlr4是用来干什么的&#xff1f; 是用来生成某语言lexer和parser的。 通俗点说&#xff0c;就是输入一个语言的规则描述文件&…...

超级好用的C++实用库之文件目录操作

&#x1f4a1; 需要该C实用库源码的大佬们&#xff0c;可扫码关注文章末尾的微信公众号二维码&#xff0c;或搜索微信公众号“希望睿智”。添加关注后&#xff0c;输入消息“超级好用的C实用库”&#xff0c;即可获得源码的下载链接。 概述 文件和目录操作是操作系统层面上的基…...

结合kimi chat的爬虫实战思路

背景 想钻研一下项目组件&#xff0c;找找之后的学习方向。不能自以为是&#xff0c;所以借着网开源项目网站上公布的项目内容看一下&#xff0c;那些是我可以努力去学习的&#xff08;入门的&#xff09;。首先需要获取相关内容&#xff0c;于是爬取整理。 任务1&#xff1a…...

UnsupportedClassVersionError异常如何解决?

下面是异常报错的详细描述 java -version java version "17.0.11" 2024-04-16 LTS Java(TM) SE Runtime Environment (build 17.0.117-LTS-207) Java HotSpot(TM) 64-Bit Server VM (build 17.0.117-LTS-207, mixed mode, sharing) 环境变量已经是jdk17&#xff0c;但…...

LeetCode热题100|动态规划Part.1|70.爬楼梯、118.杨辉三角、198.打家劫舍

70.爬楼梯 代码随想录原题&#xff0c;看这篇文章&#xff1a;C动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯 118.杨辉三角 题目链接&#xff1a;118.杨辉三角 一刷代码 时间复杂度和空间复杂度都造到 O ( n u m R o w s 2 ) O(num…...

python 根据网址和关键词批量下载影像

最近用到了GLASS的LAI产品&#xff0c;但这个产品的文件夹分得很细&#xff0c;我需要的影像又有8个瓦片&#xff0c;一个一个点击很麻烦&#xff0c;于是探索了批量下载的方法 一、下载1幅 import requests import re import os import requests import re# 网页URLurl &…...

爬虫-无限debug场景 解决方式

解决无限debug 场景1 1. 鼠标右键 选择 continue to here&#xff08;此处不停留&#xff09;2. 鼠标右键 选择 edite breakpoint 设置 10 保证条件不成立 这行永远不执行3.方法置空 1. 方法调用加断点2. 控制台 setInterval function name() {}4. 替换文件 5. hoo…...

[链表专题]力扣206, 203, 19

1. 力扣206 : 反转链表 (1). 题 : 图略 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。示例 1&#xff1a;输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2&#xff1a;输入&#xff1a;head [1,2] 输出&#x…...

秋招后端开发面试题 - MySQL基础

目录 MySQL基础前言面试题MySQL 基础篇Mysql 的基础架构&#xff1f;MySQL 的长连接和短连接长连接引起的异常重启问题&#xff1f;说一下 MySQL 执行一条查询语句的内部执行过程&#xff1f;MySQL 查询缓存的功能有何优缺点&#xff1f;MySQL 的常用引擎都有哪些&#xff1f;I…...

力扣每日一题113:路径总和||

题目 中等 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSu…...

Thinkphp5 中常见的session 操作方法

在 ThinkPHP 框架中&#xff0c;session 是用于在多个页面或请求之间存储用户信息的机制。以下是在 ThinkPHP 中进行 session 常见操作的一些示例&#xff1a; 启动 Session 在 ThinkPHP 中&#xff0c;通常不需要手动启动 Session&#xff0c;因为框架会在应用启动时自动处理…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

dvwa11——XSS(Reflected)

LOW 分析源码&#xff1a;无过滤 和上一关一样&#xff0c;这一关在输入框内输入&#xff0c;成功回显 <script>alert(relee);</script> MEDIUM 分析源码&#xff0c;是把<script>替换成了空格&#xff0c;但没有禁用大写 改大写即可&#xff0c;注意函数…...

Java求职者面试:微服务技术与源码原理深度解析

Java求职者面试&#xff1a;微服务技术与源码原理深度解析 第一轮&#xff1a;基础概念问题 1. 请解释什么是微服务架构&#xff0c;并说明其优势和挑战。 微服务架构是一种将单体应用拆分为多个小型、独立的服务的软件开发方法。每个服务都运行在自己的进程中&#xff0c;并…...

ubuuntu24.04 编译安装 PostgreSQL15.6+postgis 3.4.2 + pgrouting 3.6.0 +lz4

文章目录 下载基础包下载源码包编译 PG编译 postgis编译安装 pgrouting下载源码包配置编译参数编译安装 初始化数据库建表并检查列是否使用了 lz4 压缩算法检查 postgis 与 pgrouting 是否可以成功创建 下载基础包 sudo apt update && sudo apt upgrade -y sudo apt i…...