当前位置: 首页 > news >正文

Mac YOLO V9推理测试(基于ultralytics)

环境:

Mac M1 (MacOS Sonoma 14.3.1)

Python 3.11+PyTorch 2.1.2

一、准备工作

使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。

YOLOv9目前提供了四种模型下载:yolov9-c.pt、yolov9-e.pt、gelan-c.pt、gelan-e.pt

wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt

将下载好的模型放到指定的位置(实际发现这一步不用做,白费了)。

下载示例图片(也可手动下载放置),放到指定位置下:

wget -P /Users/zhujiahui/Local/dataset -q https://media.roboflow.com/notebooks/examples/dog.jpeg

安装Python依赖

pip install opencv-python
pip install ultralytics

二、推理

编写以下代码:

from ultralytics import YOLOdef yolov9_inference():yolo_model = YOLO("/Users/zhujiahui/Local/model/yolov9/yolov9-e.pt")yolo_model.info()if __name__ == '__main__':yolov9_inference()

直接运行,发现报错:

TypeError: ERROR ❌️ /Users/zhujiahui/Local/model/yolov9/yolov9-e.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com/ultralytics/yolov5.
This model is NOT forwards compatible with YOLOv8 at https://github.com/ultralytics/ultralytics.
Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'

意思是说从https://github.com/WongKinYiu/yolov9下载的模型yolov9-e.pt与本训练推理框架(ultralytics)不match,必须使用经过ultralytics训练的模型。

于是改动如下,选用ultralytics提供的YOLO V9模型:

from ultralytics import YOLOdef yolov9_inference():yolo_model = YOLO("yolov9e.pt")yolo_model.info()if __name__ == '__main__':yolov9_inference()

首次运行会下载模型到当前代码所在的文件夹下

对示例图片进行检测:

from ultralytics import YOLOdef yolov9_inference():yolo_model = YOLO("yolov9e.pt")yolo_model.info()results = yolo_model.predict(source='/Users/zhujiahui/Local/dataset/dog.jpeg', save=True, save_txt=True)print(results)if __name__ == '__main__':yolov9_inference()

结果如下:

具体检测后的结果图片在runs/detect/predict/dog.jpeg下,效果:

原图检测结果

输入的图片也可以通过OpenCV读入:

def yolov9_inference2():yolo_model = YOLO("yolov9e.pt")yolo_model.info()input_image = cv2.imread("/Users/zhujiahui/Local/dataset/dog.jpeg")results = yolo_model.predict(source=input_image, save=True, save_txt=True)print(results)

相关文章:

Mac YOLO V9推理测试(基于ultralytics)

环境: Mac M1 (MacOS Sonoma 14.3.1) Python 3.11PyTorch 2.1.2 一、准备工作 使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。 YOLOv9目前提供了四种模型下载:yolov9-c.pt、yolov9-e.pt、gelan-c.p…...

OuterClass.this cannot be referenced from a static context

目标,定义了一个内部类,然后把这个内部类设置为单例 一 使用非静态内部类 public class OuterClass {public class InnerClass {} } 直接定义单例: .OuterClass.this cannot be referenced from a static context public class OuterClass …...

CAP与BASE分布式理论

一、分布式理论 1.CAP理论 CAP理论是说对于分布式数据存储,最多只能同时满足一致性(C,Consistency)、可用性(A, Availability)、分区容忍性(P,Partition Tolerance&…...

JavaScript性能优化策略

JavaScript性能优化策略可以分为以下几个方面: 减少内存使用:避免创建不必要的对象和数组,使用对象池或数组缓存来重复利用已有的对象和数组。此外,及时释放不再需要的对象和数组,避免内存泄漏。 减少重绘和回流&…...

curl访问流式非流式大模型openai api接口

参考:https://platform.openai.com/docs/api-reference/making-requests 命令行访问: 直接是vllm的openai api接口 curl http://192.168.***:10860/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: EMPTY" -d {"mod…...

Go 使用 MongoDB

MongoDB 安装(Docker)安装 MongoDB Go 驱动使用 Go Driver 连接到 MongoDB在 Go 里面使用 BSON 对象CRUD 操作 插入文档更新文档查询文档删除文档 下一步 MongoDB 安装(Docker) 先装个 mongo,为了省事就用 docker 了。 docker 的 daemon.json 加一个国内的源地址…...

什么是g++-arm-linux-gnueabihf

2024年5月3日,周五晚上 g-arm-linux-gnueabihf 是针对 ARM 架构(ARMv7 和 ARMv8)的 Linux 系统开发的 GNU C 编译器套件,可以在 x86 或 x86_64 架构的主机上使用,用于交叉编译 ARM Linux 应用程序和库。 与 gcc-arm-l…...

Unity延时触发的几种常规方法

目录 1、使用协程Coroutine2、使用Invoke、InvokeRepeating函数3、使用Time.time4、使用Time.deltaTime5、使用DOTween。6、使用Vision Timer。 1、使用协程Coroutine public class Test : MonoBehaviour {// Start is called before the first frame updatevoid Start(){ …...

CSS文字描边,文字间隔,div自定义形状切割

clip-path: polygon( 0 0, 68% 0, 100% 32%, 100% 100%, 0 100% );//这里切割出来是少一角的正方形 letter-spacing: 1vw; //文字间隔 -webkit-text-stroke: 1px #fff; //文字描边1px uniapp微信小程序顶部导航栏设置透明,下拉改变透明度 onP…...

XWiki 服务没有正确部署在tomcat中,如何尝试手动重新部署?

1. 停止 Tomcat 服务 首先,您需要停止正在运行的 Tomcat 服务器,以确保在操作文件时不会发生冲突或数据损坏: sudo systemctl stop tomcat2. 清空 webapps 下的 xwiki 目录和 work 目录中相关的缓存 删除 webapps 下的 xwiki 目录和 work …...

【退役之重学Java】关于 Redis

一、Redis 都有哪些数据类型 String 最基本的类型,普通的set和get,做简单的kv缓存hash 这是一个类似map 的一种结构,这个一般可以将结构化的数据,比如一个对象(前提是这个对象没有嵌套其他的对象)给缓存在…...

DateKit

目录 1、 DateKit 1.1、 DaysBetween 1.2、 compareDate 1.3、 dateFormat 1.4、 birthdayFormat 1.5、 getYesterday...

百度智能云数据仓库 Palo 实战课程

通过本课程,您将学习如何使用 Palo 构建高性能、低延迟的分布式数仓服务,掌握数据建模、数据导入、查询优化和系统调优等技能,掌握如何管理和运维 Palo 集群,提高数据处理和分析的效率。同时,我们将进一步向您介绍 Pal…...

服务端JavaScript(Node.js)与去IO编程:Node.js的事件驱动和非阻塞IO模型,它是如何使JavaScript走向后端的

在Node.js中,JavaScript代码运行在V8引擎上。由于JavaScript是单线程语言,一次只能处理一个事件。为了解决这个问题,Node.js引入了事件驱动模型。每个进行IO操作的函数都是异步的,当这个函数被调用的时候,它不会立即执…...

一键局域网共享工具

一键局域网共享工具:实现文件快速共享的新选择 在数字化时代,文件共享已成为我们日常工作和生活中的重要需求。无论是在家庭还是在办公环境中,我们经常需要在不同的设备之间传输文件。为了满足这一需求,一键局域网共享工具应运而…...

python实现把doc文件批量转化为docx

python实现把doc文件批量转化为docx import os from win32com import client as wcdef doSaveAas(doc_path,docx_path):#该函数参考https://blog.csdn.net/m0_38074612/article/details/128985384word wc.Dispatch(Word.Application)doc word.Documents.Open(doc_path) # 目…...

WEB基础---反射

什么是反射 相对官方解释 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力; 在运行时期,动态地去获取类中的信息(类的信息,方法信息,构造器信息,字段等信息); 在运行的时候获取到的类信息 封装一个字节码对象…...

impdp恢复表后发现比原表多了100多行

因客户删除数据,恢复表时发现恢复表后发现比原表多了100多行,啥原因暂不清楚,继续学习 [oraclehydb ~]$ more expdp_orcl_20240406_2100.log |grep "USR_HY"."T_COPIES". . exported "USR_HY"."T_COPIES…...

Jupyter配置远程访问的密码

安装 下载Anaconda的.sh文件后,上传到服务器,然后进行安装: chmod x anaconda.sh ./anaconda.sh创建虚拟环境 可以指定Python版本创建虚拟环境: conda create --name langchain python3.11.7 conda activate langchain conda …...

Windows下通过MySQL Installer安装MySQL服务

在Windows下,使用MySQL Installer来安装MySQL服务是一个相对简单的过程。以下是一步一步的详细指南: 下载MySQL Installer: 访问MySQL官方网站(https://www.mysql.com/downloads/),在下载页面选择合适的MyS…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...