当前位置: 首页 > news >正文

备战蓝桥python——完全平方数

完全平方数

链接: 完全平方数
在这里插入图片描述

暴力解法:

n = int(input())
for i in range(1, n+1):if(((i*n)**0.5)%1==0.0):print(i)break

运用数论相关知识求解

任意一个正整数都可以被分解成若干个质数乘积的形式,例如 :20=22∗5120 = \ 2^{2}*5^{1}\,20= 2251

由此,我们不难分析出,只要分解出的质因数的幂次项均为偶数,这个数就是完全平方数了

100=22∗52100 = \ 2^{2}*5^{2}\,100= 2252
这就是我们寻找x的方法

搜索范围的问题

我们确定搜索范围为[1, int(n**0.5)]
我们是如何推导出来的呢?

1)如果这个数本身就是完全平方数,也就是:
100=22∗52100 = \ 2^{2}*5^{2}\,100= 2252
对100开根号结果为10,包含了两个质因数,那么我们肯定可以搜索到它的质因数

2)如果这个数本身不是完全平方数,也就是:
20=22∗5120 = \ 2^{2}*5^{1}\,20= 2251
对20开根号,取整得到4,在二者中间,并且后者幂次项为奇数,最后直接乘上就好了

完整代码

def zhi(x):for i in range(2, int(x**0.5)+1):if(x%i==0):return Falsereturn Truen = int(input())
ans=1
for i in range(2, int(n**0.5)+1):if(n%i==0 and zhi(i)):k=0while n%i==0:n/=ik+=1if(k&1):ans*=i
if(n>1):ans*=n
print(int(ans))

相关文章:

备战蓝桥python——完全平方数

完全平方数 链接: 完全平方数 暴力解法: n int(input()) for i in range(1, n1):if(((i*n)**0.5)%10.0):print(i)break运用数论相关知识求解 任意一个正整数都可以被分解成若干个质数乘积的形式,例如 :2022∗5120 \ 2^{2}*5^{1}\,20 22∗51 由此…...

WebRTC中的NAT穿透

NAT简介 我们知道,WebRTC会按照内网、P2P、中转的顺序来尝试连接。在大部分的情况下,实际是使用P2P或者中转的。这里P2P的场景主要使用的技术就是NAT穿透。 我们先简单了解下NAT。NAT在真实网络中是常见的,它的出现一是为了解决ipv4地址不够…...

SpringCloud-高级篇(一)

目录: (1)初识Sentinel-雪崩问题的解决方案 (2)服务保护Sentinel和Hystrix对比 (3)Sentinel初始-安转控制台 (4)整合微服务和Sentinel 微服务高级篇 (1&…...

电脑自动重启是什么原因?详细解说

案例:电脑自动重启是什么原因? “一台用了一年的电脑,最近使用,每天都会一两次莫名其妙自动重启,看了电脑错误日志,看不懂什么意思,一直找不到答案。有没有高手知道怎么解决这个问题的。” 当…...

2023美国大学生数学建模竞赛E题思路

problem 背景: 光污染用于描述过度或不良使用人造光。我们称之为光污染的一些现象包括光侵入、过度照明和光杂波。在大城市,太阳落山后,这些现象最容易在天空中看到:然而,它们也可能发生在更偏远的地区。 光污染会改变我们对夜空…...

蓝桥杯三月刷题 第五天

文章目录💥前言😉解题报告💥数的分解🤔一、思路:😎二、代码:💥前言 上午没写,下午写了会被朋友拉出去耍,被冷风吹到了,而且被他坑了,根本没有玩骑…...

Echarts 水波图实现

开发的项目中需要实现这样一个水波图,例如下图在echarts官网中找了很久没找到,后面是在Echarts社区中找到的,实现了大部分的样式,但是还有一些数据的展示没有实现。水波图的数值展示是默认整数百分比,我的需求是需要保…...

逻辑优化基础-shannon decomposition

1. 简介 在逻辑综合中,香农分解(Shannon decomposition)是一种常用的布尔函数分解方法。它将一个布尔函数分解为两个子函数的和,其中每个子函数包含一个布尔变量的取反和非取反的部分。 具体来说,假设对于一个布尔函…...

Java中线程池的创建与使用

前言:默认线程池的弊端在线程池应用中,参考阿里巴巴java开发规范:线程池不允许使用Executors去创建,不允许使用系统默认的线程池,推荐通过ThreadPoolExecutor的方式,这样的处理方式让开发的工程师更加明确&…...

关于HashMap与OkHttp的使用

写了一个okhttp的post请求方法,添加参数很麻烦,需要封装: //post请求public static void sendOkHttpRequestPost(String address , Callback callback) {OkHttpClient client new OkHttpClient();// 创建表单参数RequestBodyRequestBody fo…...

华为OD机试 - 单词倒序(C 语言解题)【独家】

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 使用说明本期题目:单词倒序…...

搭建Samba服务器

搭建Samba服务器 文章目录搭建Samba服务器samba安装安装命令配置-ubuntu侧为samba服务器创建一个共享目录share创建使用该共享文件夹的账号修改samba服务器配置文件重启samba服务windows创建映射1.点击映射网络驱动器2.输入Ubuntu中的ip地址及其用户信息3.输入用户信息及其密码…...

Matlab进阶绘图第5期—风玫瑰图(WindRose)

风玫瑰图(Wind rose diagram)是一种特殊的极坐标堆叠图/统计直方图,其能够直观地表示某个地区一段时期内风向、风速的发生频率。 风玫瑰图在建筑规划、环保、风力发电、消防、石油站设计、海洋气候分析等领域都有重要作用,所以在一些顶级期刊中也能够看…...

【SQL开发实战技巧】系列(二十四):数仓报表场景☞通过执行计划详解”行转列”,”列转行”是如何实现的

系列文章目录 【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧…...

XILINX AXI总线学习

AXI介绍什么是AXI?AXI(高级可扩展接口),是ARM AMBA的一部分;AMBA:高级微控制器总线架构;是1996年首次引入的一组微控制器总线;开放的片内互联的总线标准,能在多主机设计中实现多个控…...

2022CCPC女生赛(补题)(A,C,E,G,H,I)

迟了好久的补题&#xff0c;&#xff0c;现在真想把当时赛时的我拉出来捶一拳排序大致按照题目难度。C. 测量学思路&#xff1a;直接循环遍历判断即可&#xff0c;注意角度要和2π取个最小值。AC Code&#xff1a;#include <bits/stdc.h>typedef long long ll; const int…...

【Nginx】Nginx的安装配置

环境说明系统&#xff1a;Centos 7一、编译安装Nginx官网下载地址nginx: download#安装依赖 [rootnginx nginx-1.22.1]# yum install gcc pcre pcre-devel zlib zlib-devel -y #从官网下载Nginx安装包&#xff0c;并进行解压、编译、安装 [rootnginx ~]# wget https://nginx.or…...

数学小课堂:统计时有效地筛选数据

文章目录引言I 被爆冷门的原因II 统计时有效地筛选数据2.1 统计数据的常见问题2.2 大数据的特征2.3 有效筛选数据的原则引言 在博弈论中很多结果有发生的概率&#xff0c;而概率这件事只是估计出来的&#xff0c;并不准确。因此&#xff0c;一旦加入博弈的选手多了之后&#x…...

MySQL安装优化

hello&#xff0c;大家好&#xff0c;我是小鱼 本文主要通过针对 MySQL Server&#xff08;mysqld&#xff09;相关实现机制的分析&#xff0c;得到一些相应的优化建议。主要 涉及 MySQL 的安装以及相关参数设置的优化&#xff0c;但不包括 mysqld 之外的比如存储引擎相关的参…...

RocketMQ系列开篇

RocketMQ系列开篇 今天开始学习RocketMQ相关系列源码。我会带着自己的目的去学习源码。所以不会像一般的技术博客一样&#xff0c;写一个完整的流程&#xff0c;介绍每一步干了啥。而是提出一个问题&#xff0c;然后去看代码里面是怎么实现的。说明一下&#xff0c;本次系列我…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...