当前位置: 首页 > news >正文

备战蓝桥python——完全平方数

完全平方数

链接: 完全平方数
在这里插入图片描述

暴力解法:

n = int(input())
for i in range(1, n+1):if(((i*n)**0.5)%1==0.0):print(i)break

运用数论相关知识求解

任意一个正整数都可以被分解成若干个质数乘积的形式,例如 :20=22∗5120 = \ 2^{2}*5^{1}\,20= 2251

由此,我们不难分析出,只要分解出的质因数的幂次项均为偶数,这个数就是完全平方数了

100=22∗52100 = \ 2^{2}*5^{2}\,100= 2252
这就是我们寻找x的方法

搜索范围的问题

我们确定搜索范围为[1, int(n**0.5)]
我们是如何推导出来的呢?

1)如果这个数本身就是完全平方数,也就是:
100=22∗52100 = \ 2^{2}*5^{2}\,100= 2252
对100开根号结果为10,包含了两个质因数,那么我们肯定可以搜索到它的质因数

2)如果这个数本身不是完全平方数,也就是:
20=22∗5120 = \ 2^{2}*5^{1}\,20= 2251
对20开根号,取整得到4,在二者中间,并且后者幂次项为奇数,最后直接乘上就好了

完整代码

def zhi(x):for i in range(2, int(x**0.5)+1):if(x%i==0):return Falsereturn Truen = int(input())
ans=1
for i in range(2, int(n**0.5)+1):if(n%i==0 and zhi(i)):k=0while n%i==0:n/=ik+=1if(k&1):ans*=i
if(n>1):ans*=n
print(int(ans))

相关文章:

备战蓝桥python——完全平方数

完全平方数 链接: 完全平方数 暴力解法: n int(input()) for i in range(1, n1):if(((i*n)**0.5)%10.0):print(i)break运用数论相关知识求解 任意一个正整数都可以被分解成若干个质数乘积的形式,例如 :2022∗5120 \ 2^{2}*5^{1}\,20 22∗51 由此…...

WebRTC中的NAT穿透

NAT简介 我们知道,WebRTC会按照内网、P2P、中转的顺序来尝试连接。在大部分的情况下,实际是使用P2P或者中转的。这里P2P的场景主要使用的技术就是NAT穿透。 我们先简单了解下NAT。NAT在真实网络中是常见的,它的出现一是为了解决ipv4地址不够…...

SpringCloud-高级篇(一)

目录: (1)初识Sentinel-雪崩问题的解决方案 (2)服务保护Sentinel和Hystrix对比 (3)Sentinel初始-安转控制台 (4)整合微服务和Sentinel 微服务高级篇 (1&…...

电脑自动重启是什么原因?详细解说

案例:电脑自动重启是什么原因? “一台用了一年的电脑,最近使用,每天都会一两次莫名其妙自动重启,看了电脑错误日志,看不懂什么意思,一直找不到答案。有没有高手知道怎么解决这个问题的。” 当…...

2023美国大学生数学建模竞赛E题思路

problem 背景: 光污染用于描述过度或不良使用人造光。我们称之为光污染的一些现象包括光侵入、过度照明和光杂波。在大城市,太阳落山后,这些现象最容易在天空中看到:然而,它们也可能发生在更偏远的地区。 光污染会改变我们对夜空…...

蓝桥杯三月刷题 第五天

文章目录💥前言😉解题报告💥数的分解🤔一、思路:😎二、代码:💥前言 上午没写,下午写了会被朋友拉出去耍,被冷风吹到了,而且被他坑了,根本没有玩骑…...

Echarts 水波图实现

开发的项目中需要实现这样一个水波图,例如下图在echarts官网中找了很久没找到,后面是在Echarts社区中找到的,实现了大部分的样式,但是还有一些数据的展示没有实现。水波图的数值展示是默认整数百分比,我的需求是需要保…...

逻辑优化基础-shannon decomposition

1. 简介 在逻辑综合中,香农分解(Shannon decomposition)是一种常用的布尔函数分解方法。它将一个布尔函数分解为两个子函数的和,其中每个子函数包含一个布尔变量的取反和非取反的部分。 具体来说,假设对于一个布尔函…...

Java中线程池的创建与使用

前言:默认线程池的弊端在线程池应用中,参考阿里巴巴java开发规范:线程池不允许使用Executors去创建,不允许使用系统默认的线程池,推荐通过ThreadPoolExecutor的方式,这样的处理方式让开发的工程师更加明确&…...

关于HashMap与OkHttp的使用

写了一个okhttp的post请求方法,添加参数很麻烦,需要封装: //post请求public static void sendOkHttpRequestPost(String address , Callback callback) {OkHttpClient client new OkHttpClient();// 创建表单参数RequestBodyRequestBody fo…...

华为OD机试 - 单词倒序(C 语言解题)【独家】

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 使用说明本期题目:单词倒序…...

搭建Samba服务器

搭建Samba服务器 文章目录搭建Samba服务器samba安装安装命令配置-ubuntu侧为samba服务器创建一个共享目录share创建使用该共享文件夹的账号修改samba服务器配置文件重启samba服务windows创建映射1.点击映射网络驱动器2.输入Ubuntu中的ip地址及其用户信息3.输入用户信息及其密码…...

Matlab进阶绘图第5期—风玫瑰图(WindRose)

风玫瑰图(Wind rose diagram)是一种特殊的极坐标堆叠图/统计直方图,其能够直观地表示某个地区一段时期内风向、风速的发生频率。 风玫瑰图在建筑规划、环保、风力发电、消防、石油站设计、海洋气候分析等领域都有重要作用,所以在一些顶级期刊中也能够看…...

【SQL开发实战技巧】系列(二十四):数仓报表场景☞通过执行计划详解”行转列”,”列转行”是如何实现的

系列文章目录 【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧…...

XILINX AXI总线学习

AXI介绍什么是AXI?AXI(高级可扩展接口),是ARM AMBA的一部分;AMBA:高级微控制器总线架构;是1996年首次引入的一组微控制器总线;开放的片内互联的总线标准,能在多主机设计中实现多个控…...

2022CCPC女生赛(补题)(A,C,E,G,H,I)

迟了好久的补题&#xff0c;&#xff0c;现在真想把当时赛时的我拉出来捶一拳排序大致按照题目难度。C. 测量学思路&#xff1a;直接循环遍历判断即可&#xff0c;注意角度要和2π取个最小值。AC Code&#xff1a;#include <bits/stdc.h>typedef long long ll; const int…...

【Nginx】Nginx的安装配置

环境说明系统&#xff1a;Centos 7一、编译安装Nginx官网下载地址nginx: download#安装依赖 [rootnginx nginx-1.22.1]# yum install gcc pcre pcre-devel zlib zlib-devel -y #从官网下载Nginx安装包&#xff0c;并进行解压、编译、安装 [rootnginx ~]# wget https://nginx.or…...

数学小课堂:统计时有效地筛选数据

文章目录引言I 被爆冷门的原因II 统计时有效地筛选数据2.1 统计数据的常见问题2.2 大数据的特征2.3 有效筛选数据的原则引言 在博弈论中很多结果有发生的概率&#xff0c;而概率这件事只是估计出来的&#xff0c;并不准确。因此&#xff0c;一旦加入博弈的选手多了之后&#x…...

MySQL安装优化

hello&#xff0c;大家好&#xff0c;我是小鱼 本文主要通过针对 MySQL Server&#xff08;mysqld&#xff09;相关实现机制的分析&#xff0c;得到一些相应的优化建议。主要 涉及 MySQL 的安装以及相关参数设置的优化&#xff0c;但不包括 mysqld 之外的比如存储引擎相关的参…...

RocketMQ系列开篇

RocketMQ系列开篇 今天开始学习RocketMQ相关系列源码。我会带着自己的目的去学习源码。所以不会像一般的技术博客一样&#xff0c;写一个完整的流程&#xff0c;介绍每一步干了啥。而是提出一个问题&#xff0c;然后去看代码里面是怎么实现的。说明一下&#xff0c;本次系列我…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...