1分钟搞定Pandas DataFrame创建与索引

1.DataFrame介绍
DataFrame 是一个【表格型】的数据结构,可以看作是【由Series组成的字典】(共用同一个索引)。DataFrame 由按一定顺序排列的多列数据组成。设计初衷是将 Series 的使用场景从一维扩展到多维。DataFrame 既有行索引,也有列索引。
-
行索引:index
-
列索引:columns
-
值:values(NumPy的二维数组)
2.DataFrame的创建
-
最常见的方法是传递一个字典来创建。DataFrame 以字典的创建作为每一【列】的名称,以字典的值(一个数组)作为每一列。此外,DataFrame 会自动加上每一行的索引(和Series一样)。
-
同Series一样,若传入的列与字典的键不匹配,则相应的值为NaN。
d = {"name":["tfos","Python","Pandas"],"age":[11,30,20],
}
df = pd.DataFrame(d)
df
# 执行结果
# 每一行是一条数据
# 每一列表示一种属性
-
DataFrame的基本属性和方法:
-
values 值,二维 ndarray 数组
-
columns 列索引
-
index 行索引
-
shape 形状
-
head() 查看前几条数据,默认5条
-
tail() 查看后几条数据,默认5条
-
display(df)
# 二维数组的数据
df.values
# 执行结果
array([['tfos', 11],['Python', 30],['Pandas', 20]], dtype=object)# 列索引
df.columns
# 执行结果
Index(['name', 'age'], dtype='object')# 行索引
df.index
# 执行结果
RangeIndex(start=0, stop=3, step=1)# 形状:3行2列
df.shape
# 执行结果
(3, 2)# 查看前2条数据
df.head(2)
# 查看最后2条数据
df.tail(2)
# 设置 index 行索引
df.index = list("ABC")
df
# 设置 columns 列索引
df.columns = ["name2","age2"]
df
# 创建 DataFrame 时同时设置行和列的索引
d = {"name":["tfos","Python","Pandas"],"age":[11,30,20]
}
df = pd.DataFrame(d,index=list("ABC"))
df
-
其他创建 DataFrame 的方式
df = pd.DataFrame(data = np.random.randint(10,100,size=(4,6)),index = ["小明","小红","小黄","小绿"],columns = ["语文","数学","英语","化学","物理","生物"]
)
df
3.对列进行索引
-
通过类似字典的方式
-
通过属性的方式
可以将 DataFrame 的列获取为一个 Series。返回的 Series 拥有原 DataFrame 相同的索引,且 name 属性也已经设置好了,就是相应的列名。
df = pd.DataFrame(data = np.random.randint(10,100,size=(4,6)),index = ["小明","小红","小黄","小绿"],columns = ["语文","数学","英语","化学","物理","生物"]
)
df# Series类型
df.语文
# 执行结果
小明 47
小红 32
小黄 12
小绿 33
Name: 语文, dtype: int32df["语文"]
# 执行结果
小明 47
小红 32
小黄 12
小绿 33
Name: 语文, dtype: int32# 使用2个中括号得到的类型是 DataFrame
df[["语文","化学"]]df[["语文"]]
4.对行进行索引
-
使用 .loc[] 加 index 来进行行索引
-
使用 .iloc[] 加整数来进行行索引
同样返回一个Series, index为原来的columns。
# 不可以直接取行索引
# df.小明
# df["小明"]
# DataFrame默认是先取列索引
# 取行索引值为 Series 类型
df.loc["小明"]
# 执行结果
语文 47
数学 63
英语 62
化学 17
物理 84
生物 24
Name: 小明, dtype: int32df.iloc[0]
# 执行结果
语文 47
数学 63
英语 62
化学 17
物理 84
生物 24
Name: 小明, dtype: int32# 使用2个中括号取到的值是 DataFrame 类型
df.loc[["小明","小绿"]]df.loc[["小明"]]df.iloc[[0,-1]]df.iloc[[0,3]]df.iloc[[0]]
5.对元素索引的方法
-
使用列索引
-
使用行索引(iloc[3,1]相对于两个参数;iloc[[3,3]]里面的[3,3]看作一个参数)
-
使用 values 属性(二维 NumPy 数组)
# 先取列,再取行
df["语文"]["小明"]
# 执行结果
47df["语文"][0]
# 执行结果
47df.语文[0]
# 执行结果
47df.语文.小明
# 执行结果
47# 先取行,再取列
df.loc["小明"]["语文"]
# 执行结果
47df.loc["小明","语文"]
# 执行结果
47df.loc["小明"][0]
# 执行结果
47df.iloc[0][0]
# 执行结果
47df.iloc[0,0]
# 执行结果
47df.iloc[0]["语文"]
# 执行结果
47
相关文章:
1分钟搞定Pandas DataFrame创建与索引
1.DataFrame介绍 DataFrame 是一个【表格型】的数据结构,可以看作是【由Series组成的字典】(共用同一个索引)。DataFrame 由按一定顺序排列的多列数据组成。设计初衷是将 Series 的使用场景从一维扩展到多维。DataFrame 既有行索引ÿ…...
【贪心算法】哈夫曼编码Python实现
文章目录 [toc]哈夫曼编码不同编码方式对比前缀码构造哈夫曼编码哈夫曼算法的正确性贪心选择性质证明 最优子结构性质证明 总结 Python实现时间复杂性 哈夫曼编码 哈夫曼编码是广泛用于数据文件压缩的十分有效的编码方法,其压缩率通常为 20 % 20\% 20%到 90 % 90\%…...
【RAG 博客】RAG 应用中的 Routing
Blog:Routing in RAG-Driven Applications ⭐⭐⭐⭐ 根据用户的查询意图,在 RAG 程序内部使用 “Routing the control flow” 可以帮助我们构建更实用强大的 RAG 程序。路由模块的关键实现就是一个 Router,它根据 user query 的查询意图&…...
鸿蒙ArkUI:【编程范式:命令式->声明式】
命令式 简单讲就是需要开发用代码一步一步进行布局,这个过程需要开发全程参与。 开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 Objective-C ObjectiveC 复制代码 UIView *cardView …...
【练习2】
1.汽水瓶 ps:注意涉及多个输入,我就说怎么老不对,无语~ #include <cmath> #include <iostream> using namespace std;int main() {int n;int num,flag,kp,temp;while (cin>>n) {flag1;num0;temp0;kpn;while (flag1) {if(kp<2){if(…...
oracle 新_多种块大小的支持9i
oracle 新_多种块大小的支持 conn sys/sys as sysdba SHOW PARAMETER CACHE ALTER SYSTEM SET DB_CACHE_SIZE16M; ALTER SYSTEM SET DB_4K_CACHE_SIZE8M; CREATE TABLESPACE K4 DATAFILE F:\ORACLE\ORADATA\ZL9\K4.DBF SIZE 2M BLOCKSIZE 4K; CREATE TABLE SCOTT.A1 TABLESP…...
Collections工具类
类java.util.Collections提供了对Set、List、Map进行排序、填充、查找元素的辅助方法。 方法名说明void sort(List)对List容器内的元素排序,排序规则是升序void shuffle(List)对List容器内的元素进行随机排列void reverse(List)对List容器内的元素进行逆序排列void…...
java-函数式编程-jdk
背景 函数式接口很简单,但是不是每一个函数式接口都需要我们自己来写jdk 根据 有无参数,有无返回值,参数的个数和类型,返回值的类型 提前定义了一些通用的函数式接口 IntPredicate 参数:有一个,类型是int类…...
qiankun实现微前端,vue3为主应用,分别引入vue2和vue3微应用
1、vue3主应用配置 1、安装 qiankun yarn add qiankun # 或者 npm i qiankun -S2、在主应用中注册微应用 import { registerMicroApps, start } from "qiankun" const apps [{ name: vue2App, // 应用名称 xs_yiqing_vue2entry: //localhost:8080, // vue 应用…...
写了 1000 条 Prompt 之后,我总结出了这 9 个框架【建议收藏】
如果你对于写 Prompt 有点无从下手,那么,本文将为你带来 9 个快速编写 Prompt 的框架,你可以根据自己的需求,选择任意一个框架,填入指定的内容,即可以得到一段高效的 Prompt,让 LLM 给你准确满意…...
事件代理 浅谈
事件代理是一种将事件处理委托给父元素或祖先元素来管理的技术。当子元素触发特定事件时,该事件不会直接在子元素上进行处理,而是会冒泡到父元素或祖先元素,并在那里进行处理。这样做的好处是可以减少事件处理函数的数量,提高性能…...
一对多在线教育系统,疫情后,在线教育有哪些变革?
疫情期间,全面开展的在线教育经历了从不适应到认可投入并常态化的发展过程。如何发挥在线教学优势,深度融合线上与线下教育,将在线教育作为育人方式变革动力,提升育人服务水平,是复学复课后学校教育教学面临的关键问题…...
RabbitMQ(安装配置以及与SpringBoot整合)
文章目录 1.基本介绍2.Linux下安装配置RabbitMQ1.安装erlang环境1.将文件上传到/opt目录下2.进入/opt目录下,然后安装 2.安装RabbitMQ1.进入/opt目录,安装所需依赖2.安装MQ 3.基本配置1.启动MQ2.查看MQ状态3.安装web管理插件4.安装web管理插件超时的解决…...
JUC下的BlockingQueue详解
BlockingQueue是Java并发包(java.util.concurrent)中提供的一个接口,它扩展了Queue接口,增加了阻塞功能。这意味着当队列满时尝试入队操作,或者队列空时尝试出队操作,线程会进入等待状态,直到队列状态允许操作继续。这…...
ChatGPT理论分析
ChatGPT "ChatGPT"是一个基于GPT(Generative Pre-trained Transformer)架构的对话系统。GPT 是一个由OpenAI 开发的自然语言处理(NLP)模型,它使用深度学习来生成文本。以下是对ChatGPT进行理论分析的几个主…...
算法提高之魔板
算法提高之魔板 核心思想:最短路模型 将所有状态存入队列 更新步数 同时记录前驱状态 #include <iostream>#include <cstring>#include <algorithm>#include <unordered_map>#include <queue>using namespace std;string start&qu…...
服务器内存占用不足会怎么样,解决方案
在当今数据驱动的时代,服务器对于我们的工作和生活起着举足轻重的作用。而在众多影响服务器性能的关键因素当中,内存扮演着极其重要的角色。 服务器内存,也称RAM(Random Access Memory),是服务器核心硬件部…...
elasticsearch文档读写原理大致分析一下
文档写简介 客户端通过hash选择一个node发送请求,专业术语叫做协调节点 协调节点会对document进行路由,将请求转发给对应的primary shard primary shard在处理完数据后,会将document 同步到所有replica shard 协调节点将处理结果返回给…...
1 开发环境
开发环境(platformio python arduino框架)的搭建可以参考b站upESP32超详细教程-使用VSCode(基于Arduino框架)哔哩哔哩bilibili 这里推荐离线安装esp32库文件,要不然要等很久(b站教程很多) 搭…...
云视频,也称为视频云服务,是一种基于云计算技术理念的视频流媒体服务
云视频,也称为视频云服务,是一种基于云计算技术理念的视频流媒体服务。它基于云计算商业模式,为视频网络平台服务提供强大的支持。在云平台上,所有的视频供应商、代理商、策划服务商、制作商、行业协会、管理机构、行业媒体和法律…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
