【YOLO改进】换遍MMDET主干网络之EfficientNet(基于MMYOLO)
EfficientNet
EfficientNet是Google在2019年提出的一种新型卷积神经网络架构,其设计初衷是在保证模型性能的同时,尽可能地降低模型的复杂性和计算需求。EfficientNet的核心思想是通过均衡地调整网络的深度(层数)、宽度(每层的通道数)和分辨率(输入的图像尺寸)这三个维度,以实现模型的性能最大化。
具体来说,EfficientNet使用了一个复合缩放方法(compound scaling method),该方法将深度、宽度和分辨率的缩放比例视为一个整体进行考虑,而不是分别进行缩放。通过这种方式,EfficientNet可以在保证模型性能的同时,实现参数数量的减少和计算效率的提高。
EfficientNet包括多个变体,从EfficientNet-B0到EfficientNet-B7,其中“B”后面的数字越大,网络的深度和宽度越大,需要的计算资源也越多,但同时能够达到更高的性能。
EfficientNet作为YOLO主干网络的可行性分析
- 性能优势:EfficientNet作为一种高效的卷积神经网络架构,具有出色的性能表现。将其作为YOLO的主干网络,可以充分利用其高效的特征提取能力,从而提高目标检测的精度和效率。特别是EfficientNet的复合缩放方法,可以在不增加过多计算量的前提下,进一步提高模型的性能。
- 兼容性:YOLO是一种基于卷积神经网络的目标检测算法,而EfficientNet同样是一种基于卷积神经网络的模型。因此,EfficientNet作为YOLO的主干网络具有很好的兼容性。通过合理的网络结构和参数设置,可以将EfficientNet与YOLO的检测头进行有效地融合,形成完整的目标检测模型。
- 优化与改进:虽然EfficientNet已经具有很好的性能表现,但在实际应用中还可以根据具体任务需求进行进一步的优化和改进。例如,可以通过调整EfficientNet的网络结构、深度、宽度等参数来平衡模型的性能和速度;也可以采用一些先进的优化技术(如剪枝、量化等)来减小模型的参数量和计算量,进一步提高模型的实时性和部署能力。
替换EfficientNet(基于MMYOLO)
OpenMMLab 2.0 体系中 MMYOLO、MMDetection、MMClassification、MMSelfsup 中的模型注册表都继承自 MMEngine 中的根注册表,允许这些 OpenMMLab 开源库直接使用彼此已经实现的模块。 因此用户可以在 MMYOLO 中使用来自 MMDetection、MMClassification、MMSelfsup 的主干网络,而无需重新实现。
假设想将'EfficientNet'作为 'yolov5' 的主干网络,则配置文件如下:
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [48, 136, 384]
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' #model = dict(backbone=dict(_delete_=True,type='mmdet.EfficientNet',arch='b3',drop_path_rate=0.2,out_indices=(3, 4, 5),frozen_stages=0,norm_cfg=dict(type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01),norm_eval=False,init_cfg=dict(type='Pretrained', prefix='backbone', checkpoint=checkpoint_file)),neck=dict(type='YOLOv5PAFPN',deepen_factor=deepen_factor,widen_factor=widen_factor,in_channels=channels, # 注意:EfficientNet 输出的3个通道是 [48, 136, 384],和原先的 yolov5-s neck 不匹配,需要更改out_channels=channels),bbox_head=dict(type='YOLOv5Head',head_module=dict(type='YOLOv5HeadModule',in_channels=channels, # head 部分输入通道也要做相应更改widen_factor=widen_factor))
)
相关文章:
【YOLO改进】换遍MMDET主干网络之EfficientNet(基于MMYOLO)
EfficientNet EfficientNet是Google在2019年提出的一种新型卷积神经网络架构,其设计初衷是在保证模型性能的同时,尽可能地降低模型的复杂性和计算需求。EfficientNet的核心思想是通过均衡地调整网络的深度(层数)、宽度࿰…...

uniapp下拉选择组件
uniapp下拉选择组件 背景实现思路代码实现配置项使用尾巴 背景 最近遇到一个这样的需求,在输入框中输入关键字,通过接口查询到结果之后,以下拉框列表形式展现供用户选择。查询了下uni-app官网和项目中使用的uv-ui库,没找到符合条…...
高斯数据库创建函数的语法
CREATE FUNCTION 语法格式 •兼容PostgreSQL风格的创建自定义函数语法。 CREATE [ OR REPLACE ] FUNCTION function_name ( [ { argname [ argmode ] argtype [ { DEFAULT | : | } expression ]} [, …] ] ) [ RETURNS rettype [ DETERMINISTIC ] | RETURNS TABLE ( { column_…...

【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟
你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟 文章目录 你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟一、概述二、CallerMemberNameAttribute类三、CallerFilePathAttribute 类四、CallerLineNumberAttribute 类…...
ubuntu删除opencv
要完全删除OpenCV 3.4.5版本,你可以按照以下步骤进行操作: 卸载OpenCV库: 首先,你需要卸载OpenCV 3.4.5版本。可以使用以下命令卸载OpenCV库: sudo apt-get purge libopencv*这将删除OpenCV库及其相关文件。 删除O…...

K8s源码分析(二)-K8s调度队列介绍
本文首发在个人博客上,欢迎来踩! 本次分析参考的K8s版本是 文章目录 调度队列简介调度队列源代码分析队列初始化QueuedPodInfo元素介绍ActiveQ源代码介绍UnschedulableQ源代码介绍**BackoffQ**源代码介绍队列弹出待调度的Pod队列增加新的待调度的Podpod调…...
OpenGL ES 面试高频知识点(二)
说说纹理常用的采样方式? 最邻近点采样(GL_NEAREST)和双线性采样(GL_LINEAR)。 GL_NEAREST 采样是 OpenGL 默认的纹理采样方式,OpenGL 会选择中心点最接近纹理坐标的那个像素,纹理放大的时候会有锯齿感或者颗粒感。 **GL_LINEAR 采样会基于纹理坐标附近的纹理像素,计…...

2024第十六届“中国电机工程学会杯”数学建模A题B题思路分析
文章目录 1 赛题思路2 比赛日期和时间3 竞赛信息4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间:2024…...
面向对象的三大特性:封装、继承、多态
一、封装 封装是面向对象的核心思想。是以类为载体,将对象的属性和行为封装起来,对外隐藏其实现细节。 封装保证了类内部数据结构的完整性,使得外部(使用该类的用户)不能轻易地直接操作此数据结构,只能执…...
目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(中)
目录 3.4 实验结果与分析 深度融合注意力跨尺度复合空洞残差交通目标检测算法...
前端GET请求下载后端返回数据流文件,并且处理window.open方法跳转白屏方法
平时常用导出都是用window.open方法 点击跳转连接:使用 window.open 下载 const downError 地址?&参数${参数|| }; const downError Url/xxx/xxx?&orgId${orgId || };window.open(downError, "_self");//调用window.open方法导出 而使用…...
SD321放大器3V输入电流电压保护二极管25C电源电流
Sd 321运算放大器可以在单电源或双电源电压下工作, 可以使用最坏情况下的非反相单位增益连接来适应。如 具有真微分输入,并且保持在线性模式,输入共模电压 果放大器必须驱动较大的负载电容,则应使用较大的闭 为0。Vpc-这种放大器可…...

geoserver SQL注入、Think PHP5 SQL注入、spring命令注入
文章目录 一、geoserver SQL注入CVE-2023-25157二、Think PHP5 SQL注入三、Spring Cloud Function SpEL表达式命令注入(CVE-2022-22963) 一、geoserver SQL注入CVE-2023-25157 介绍:GeoServer是一个开源的地理信息系统(GIS&#…...

scrapy的入门
今天我们先学习一下scrapy的入门,Scrapy是一个快速的高层次的网页爬取和网页抓取框架,用于爬取网站并从页面中提取结构化的数据。 1. scrapy的概念和流程 1.1 scrapy的概念 我们先来了解一下scrapy的概念,什么是scrapy: Scrapy是一个Python编写的开源网络爬虫框架…...

大数据Scala教程从入门到精通第七篇:Scala在IDEA中编写Hello World
一:Scala在IDEA中编写Hello World 想让我们的idea支持scala的编写,需要安装一个插件。...

设计模式之数据访问对象模式
在Java编程的浩瀚星海中,有一个模式低调却强大,它像是一位默默无闻的超级英雄,支撑起无数应用的数据脊梁——那就是数据访问对象(DAO, Data Access Object)模式!想象一下,如果你能像操纵魔法一样…...
Spring aop切面编程
Spring aop切面编程 如何使用利用AuditAction创建切入点 如何使用 Aspect // 1. 创建一个类,用Aspect注解标记它,表明这是一个切面类。 Component public class LoggingAspect {// 2. 定义切点:在通知方法上,使用切点表达式来指定…...

如何更好地使用Kafka? - 事先预防篇
要确保Kafka在使用过程中的稳定性,需要从kafka在业务中的使用周期进行依次保障。主要可以分为:事先预防(通过规范的使用、开发,预防问题产生)、运行时监控(保障集群稳定,出问题能及时发现&#…...
如何解决 IPA 打包过程中的 “Invalid Bundle Structure“ 错误
哈喽,大家好呀,淼淼又来和大家见面啦,咱们行业内的应该都知道,在开发 iOS 应用时,将应用打包成 IPA 文件是常见的步骤之一。最近很多小伙伴们说在打包过程中,有时会遇到 "Invalid Bundle Structure&qu…...
Vuex:Vue.js 的状态管理库
一、Vuex 简介 Vuex 是 Vue.js 的状态管理模式和库。它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。Vuex 的出现解决了组件间共享状态的问题,使得状态管理变得简单、可预测和可维护。 二、Vuex 核心概…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...

C# winform教程(二)----checkbox
一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...