当前位置: 首页 > news >正文

使用train.py----yolov7

准备工作

在训练之前,数据集的工作和配置环境的工作要做好

数据集:看这里划分数据集,训练自己的数据集。_划分数据集后如何训练-CSDN博客

划分数据集2,详细说明-CSDN博客

配置环境看这里

从0开始配置环境-yolov7_gpu0是inter gpu1是nvidia 深度学习要用哪个-CSDN博客

参数设置工作

首先就是数据集  , 我之前写的划分数据集的那个文件夹,还有data.yaml文件要设置好,然后将这两个文件放在项目文件夹下面,注意放的位置

给大家做个参考,我把我的放在了

0代表着我的项目文件夹名称

1和2就是我说的这两个文件

在这之后吗,再说其他工作

train.py参数设置

打开train.py文件,往下拉到这

如果找不到的话,安住ctrl+F键,输入               __main__

就可以搜索到

接下来是参数的设置了

weights设置

第一个是weights  ,表示的是预训练权重,这这个东西好比说是让现在训练的模型有一些训练的经验,这样会使得训练精度有一定的提升,但是不一定说一定比没有预训练权重的好,一般来说都要好一些,这个是需要下载预训练权重的,这个东西在github下载的时候那里可以下载,

这几个画圈的蓝色字体点击就可以下载的。一般来说就下载第一个就可以了,其他的参数量大,对电脑的性能要求高。

这里我给一个百度云链接,可以从这下载

链接:https://pan.baidu.com/s/1AKN_gQwnxiyOEVqn7N0rIg?pwd=hi49 
提取码:hi49

下载下来之后,就放在项目文件夹下面就行了,这样就不用改文件路径了,

参考我的位置。

如果不使用预训练权重的画,就

这里面的字删了,改成这样

就可以了,记得改完了保存一下

cfg设置

cfg就是yolov7.yaml这种文件,我们下载的官方代码,这个文件的路径在

只需要右键这个文件,复制相对路径就可以了

粘贴在这

这里要注意,每次复制路径的时候,要把\换成/,就是          cfg/deploy/yolov7.yaml

data设置

这个就是我之前说的数据集弄的那个文件,我放在了主目录文件下,就是

hyp设置

这个是一些超参数的设置,一般别动就行了

epochs设置

这个就是说的跑多少轮,现在默认是300轮,我建议一般的话先跑个100轮先试试,完了之后看看结果咋样,就是那个精度曲线,最后平的话就不用再跑了,如果还有上升的趋势的话就可以设置200再跑跑试试。

batch-size设置

这个和自己的设备有关系,如果用显卡的话,先看一下自己的显存是多少,

我的电脑显存是4G大小,这个参数的设置一般都是2的指数倍,

举个例子,假如我设置为4,我在运行代码的时候会显示显存占用的大小,比如是1.5G大小,那么我的batch-size就可以在当前设备情况下开到8,这样就可以最大的发挥显卡的使用率,跑到速度快一些。

这里我建议先试试4,再根据情况去做调整

device设置

这里就是选择设备去训练的那个参数,如果有显卡的话,我的电脑为例子,我就一个显卡,这里是从0开始计数的,我就输入0,代表着用第一块显卡训练参数,如果你有两个显卡,就输入0,1

workers设置

这个来说,一般windows系统设置0就行了,这个设置别的有时候会报错

这个对训练没啥影响。

最后

一般就这几个参数设置就可以了,在训练的时候,先选择自己的环境。训练有两种方法,一个是在终端输入指令训练,一个是点击训练按钮训练。

使用终端训练

先新建终端,然后激活自己的环境

我的这个项目配置的环境名字叫yolov7,所以我的指令是

conda activate yolov7

 

1代表着当前选择的环境名字,

2代表着当前文件位置,这个一般都是当前项目文件夹的位置

输入

python train.py

 按回车,就开始加载训练数据了

显示这个就是说在训练了

使用编译器训练

如果你会使用终端的话,这个就别看了

先在编辑器选择环境

我使用的是vscode,选择我配置的yolov7环境

在选择之后,右下角会显示当前的环境名称

右键,运行python就可以

或者直接点击训练按钮

训练文件查看

运行之后会生成run文件夹,你往里面选择你训练的就行了,他这个是自动命名字的,选择对应的就可以了

相关文章:

使用train.py----yolov7

准备工作 在训练之前,数据集的工作和配置环境的工作要做好 数据集:看这里划分数据集,训练自己的数据集。_划分数据集后如何训练-CSDN博客 划分数据集2,详细说明-CSDN博客 配置环境看这里 从0开始配置环境-yolov7_gpu0是inter g…...

机器学习第37周周报 GGNN

文章目录 week37 GGNN摘要Abstract一、文献阅读1. 题目2. abstract3. 网络架构3.1 数据处理部分3.2 门控图神经网络3.3 掩码操作 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.3.1 传感器设置策略4.3.2 数据集4.3.3 实验设置4.3.4 模型参数设置4.3.5 实验结果 5. 结论 …...

Baidu Comate:释放编码潜能,革新软件开发

Baidu Comate Baidu Comate,智能代码助手,凭借着文心大模型的强大支撑,结合了百度多年的编程实战数据和丰富的开源资源,形成了一款崭新的编码辅助利器。它不仅具备着高智能、多场景、价值创造的特质,更可广泛应用于各…...

MATLAB的Bar3函数调节渐变色(内附渐变色库.mat及.m文件免费下载链接)

一. colormap函数 可以使用colormap函数: t1[281.1,584.6, 884.3,1182.9,1485.2; 291.6,592.6,896,1197.75,1497.33; 293.8,596.4,898.6,1204.4,1506.4; 295.8,598,904.4,1209.0,1514.6];bar3(t1,1) set(gca,XTickLabel,{300,600,900,1200,1500},FontSize,10) set…...

使用 TensorFlow.js 和 OffscreenCanvas 实现实时防挡脸弹幕

首先,要理解我们的目标,我们将实时获取视频中的面部区域并将其周围的内容转为不透明以制造出弹幕的“遮挡效应”。 步骤一:环境准备 我们将使用 TensorFlow.js 的 Body-segmentation 库来完成面部识别部分,并使用 OffscreenCanv…...

【计算机网络篇】数据链路层(10)在物理层扩展以太网

文章目录 🍔扩展站点与集线器之间的距离🛸扩展共享式以太网的覆盖范围和站点数量 🍔扩展站点与集线器之间的距离 🛸扩展共享式以太网的覆盖范围和站点数量 以太网集线器一般具有8~32个接口,如果要连接的站点数量超过了…...

conan2 基础入门(03)-使用(msvc为例)

conan2 基础入门(03)-使用(msvc为例) 文章目录 conan2 基础入门(03)-使用(msvc为例)⭐准备生成profile文件预备文件和Code ⭐使用指令预览正确执行结果可能出现的问题 ⭐具体讲解conanconanfile.txt执行 install cmakeCMakeLists.txt生成项目构建 END ⭐准备 在阅读和学习本文…...

uniapp this 作用域保持的方法

在 UniApp(或任何基于 Vue.js 的框架)中,this 关键字通常用于引用当前 Vue 实例的上下文。然而,当你在回调函数、定时器、Promise、异步函数等中使用 this 时,你可能会发现 this 的值不再指向你期望的 Vue 实例&#x…...

vue2 与vue3的差异汇总

Vue 2 与 Vue 3 之间存在多方面的差异,这些差异主要体现在性能、API设计、数据绑定、组件结构、以及生命周期等方面。以下是一些关键差异的汇总: 数据绑定与响应式系统 Vue 2 使用 Object.defineProperty 来实现数据的响应式,这意味着只有预…...

Java反射(含静态代理模式、动态代理模式、类加载器以及JavaBean相关内容)

目录 1、什么是反射 2、Class类 3、通过Class类取得类信息/调用属性或方法 4、静态代理和动态代理 5.类加载器原理分析 6、JavaBean 1、什么是反射 Java反射机制的核心是在程序运行时动态加载类并获取类的详细信息,从而操作类或对象的属性和方法。本质是JVM得…...

Scoop国内安装、国内源配置

安装配置源可参考gitee上的大佬仓库,里面的步骤、代码都很详细,实测速度也很好 glsnames/scoop-installer 也可以结合其它bucket使用 使用Github加速网站,也可以换做其他代理方式,自行测试 例如:https://mirror.ghprox…...

【软件开发规范篇】JAVA后端开发编程规范

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…...

数据结构与算法学习笔记三---循环队列的表示和实现(C语言)

目录 前言 1.为啥要使用循环队列 2.队列的顺序表示和实现 1.定义 2.初始化 3.销毁 4.清空 5.空队列 6.队列长度 7.获取队头 8.入队 9.出队 10.遍历队列 11.完整代码 前言 本篇博客介绍栈和队列的表示和实现。 1.为啥要使用循环队列 上篇文章中我们知道了顺序队列…...

vue3中的reactive和ref

在Vue 3中,reactive和ref是两个常用的响应式API,用于创建响应式的数据。它们的主要区别在于reactive用于创建对象或数组的响应式引用,而ref用于创建单个值的响应式引用。下面我将分别介绍它们的详细用法,并提供代码示例。 1. rea…...

Centos安装 docker和docker-compose

安装docker yum install -y yum-utils yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.io sudo systemctl start docker sudo systemctl enable docker docker version 在L…...

VUE 或 Js封装通用闭包循环滚动函数

1、vue3 闭包滚动函数的使用 js 调用也基本雷同 // 滚动Tab组件const scoreTabRef ref()// 滚动的选项const scrollOption ref({// 滚动的Dom元素scrollDom: null,// 滚动的时间间隔scrollInterval: 1500,// 滚动的距离scrollSep: 100,// 滚动历时时间scrollDuration: 10…...

个人所得税计算器

个人所得税计算器 本文使用drools规则引擎根据预定义的规则计算个人所得税。我国个人所得税的纳税义务人是在中国境内居住有所得的人,以及不在中国境内居住而从中国境内取得所得的个人,包括中国国内公民,在华取得所得的外籍人员和港、澳、台同胞。个人所得税的计算公式如下…...

网络工程师----第二十四天

计算机基础 第一章:概述 互联网的组成: (1)边缘部分:由所有连接在互联网上的主机组成。这部分是用户直接使用的,用来进行通信(传送数据、音频或视频)和资源共享。 (2…...

后端常用技能:基于easy-poi实现excel一对多、多对多导入导出【附带源码】

0. 引言 在业务系统开发中,我们经常遇到excel导入导出的业务场景,普通的excel导入导出我们可以利用 apache poi、jxl以及阿里开源的easyexcel来实现,特别easyexcel更是将excel的导入导出极大简化,但是对于一些负载的表格形式&…...

PDF转word转ppt软件

下载地址:PDF转word转ppt软件.zip 平时工作生活经常要用到PDF转word转ppt软件,电脑自带的又要开会员啥的很麻烦,现在分享这款软件直接激活就可以免费使用了,超级好用,喜欢的可以下载...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...