当前位置: 首页 > news >正文

对数据进行标准化和归一化

数据的形式:保存在CSV中,第一列为姓名,第二列之后为特征。

 标准化

输入文件的路径,设置保存转化后的文件路径

import pandas as pd
from sklearn.preprocessing import StandardScaler# 读取CSV文件
data = pd.read_csv(r'C:\Users\Administrator\Desktop\Breast\benign.csv')# 提取特征列
features = data.drop('Name', axis=1)# 初始化标准化器
scaler = StandardScaler()# 对特征进行标准化
scaled_features = scaler.fit_transform(features)# 将标准化后的特征重新添加到原始DataFrame中
scaled_data = pd.DataFrame(scaled_features, columns=features.columns)
scaled_data.insert(0, 'Name', data['Name'])# 定义标准化后的文件路径
output_file = r'C:\Users\Administrator\Desktop\Breast\benign_standardized.csv'# 将标准化后的数据保存到CSV文件中
scaled_data.to_csv(output_file, index=False)# 打印成功信息
print("数据已经成功标准化并保存到文件:", output_file)

归一化

输入文件的路径,设置保存转化后的文件路径

import pandas as pd
from sklearn.preprocessing import MinMaxScaler# 读取CSV文件
data = pd.read_csv(r'C:\Users\Administrator\Desktop\Breast\benign.csv')# 提取特征列
features = data.drop('Name', axis=1)# 初始化归一化器
scaler = MinMaxScaler()# 对特征进行归一化
normalized_features = scaler.fit_transform(features)# 将归一化后的特征重新添加到原始DataFrame中
normalized_data = pd.DataFrame(normalized_features, columns=features.columns)
normalized_data.insert(0, 'Name', data['Name'])# 定义归一化后的文件路径
output_file = r'C:\Users\Administrator\Desktop\Breast\benign_normalized.csv'# 将归一化后的数据保存到CSV文件中
normalized_data.to_csv(output_file, index=False)# 打印成功信息
print("数据已经成功归一化并保存到文件:", output_file)

相关文章:

对数据进行标准化和归一化

数据的形式:保存在CSV中,第一列为姓名,第二列之后为特征。 标准化 输入文件的路径,设置保存转化后的文件路径 import pandas as pd from sklearn.preprocessing import StandardScaler# 读取CSV文件 data pd.read_csv(rC:\User…...

【从零开始学架构 架构基础】二 架构设计的复杂度来源:高性能复杂度来源

架构设计的复杂度来源其实就是架构设计要解决的问题,主要有如下几个:高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键,就是新旧技术之间不是完全的替代关系,有交叉,有各自的特点,所以才需要具体…...

OpenHarmony 实战开发——3.1 Release + Linux 原厂内核Launcher起不来问题分析报告

1、关键字 Launcher 无法启动;原厂内核;Access Token ID; 2、问题描述 芯片:rk3566;rk3399 内核版本:Linux 4.19,是 RK 芯片原厂发布的 rk356x 4.19 稳定版内核 OH 版本:OpenHa…...

小猫咪邮件在线发送系统源码,支持添加附件

一款免登录发送邮件,支持发送附件,后台可添加邮箱,前台可选择发送邮箱 网站数据采取本地保存,所以使用前请给网站修改权限,否则很多功能将无法使用 安装教程: 1.上传服务器或者主机 2.登录后台,添加发送…...

Django REST framework(DRF)是什么?

Django REST framework(DRF)是什么? Django REST framework(简称DRF)是一个强大且灵活的工具包,用于构建Web API。它是基于Django(一个高级Python Web框架)构建的,提供了…...

用hMailServer+roundcubemail+宝塔安装配置一个自己的邮箱服务

用hMailServerroundcubemail安装配置一个自己的邮箱服务 1、准备工具与资料: 云服务器一台 基础配置就行 2核4G。域名一个 以下用lizipro.cn示例。hMailServer安装包roundcubemail安装包异常处理插件补丁: libmysql.zip 2、hMailServer服务安装&#…...

ctfshow 框架复现

文章目录 web 466web 467web 468web469web 470web 471web 472web 473web 474web 475web 476 web 466 Laravel5.4版本 &#xff0c;提交数据需要base64编码 代码审计学习—Laravel5.4 - 先知社区 (aliyun.com) 用第二条链子 反序列化格式 /admin/序列化串base64<?php na…...

【Linux-IMX6ULL-DDR3简介测试-RGBLCD控制原理】

目录 1. DDR3 简介1.1 前要基本概念RAM & ROM 2. DDR3测试及初始化3. RGBLCD简介及控制原理3.1 RGBLCD简介3.2.1 RGB LCD时序3.2.2 像素时钟&#xff08;800*400分辨率&#xff09;3.2.2 显存&#xff08;800*400分辨率&#xff09; 3.3 RGBLCD的控制3.3.1 DOTCLK 硬件接口…...

贪心算法-----柠檬水找零

今日题目&#xff1a;leetcode860 题目链接&#xff1a;点击跳转题目 分析&#xff1a; 顾客只会给三种面值&#xff1a;5、10、20&#xff0c;先分类讨论 当收到5美元时&#xff1a;不用找零&#xff0c;面值5张数1当收到10美元时&#xff1a;找零5美元&#xff0c;面值5张数…...

MySQL技能树学习

在MySQL中&#xff0c;DDL&#xff08;数据定义语言&#xff09;用于定义数据库对象&#xff08;如表、索引、视图等&#xff09;&#xff0c;DML&#xff08;数据操纵语言&#xff09;用于操作数据库中的数据&#xff08;如插入、更新、删除数据&#xff09;&#xff0c;DQL&a…...

java 动态代理详解

cglib 动态代理 介绍 CGLIB是一个功能强大&#xff0c;高性能的代码生成包。它为没有实现接口的类提供代理&#xff0c;为JDK的动态代理提供了很好的补充。通常可以使用Java的动态代理创建代理&#xff0c;但当要代理的类没有实现接口或者为了更好的性能&#xff0c;CGLIB 是一…...

Web路径专题

文章目录 Web路径专题什么是路径&#xff1f;绝对路径相对路径 如何使用路径&#xff1f;使用base标签 注意事项小结 Web路径专题 在Web开发中&#xff0c;路径是一个非常重要的概念。路径用来定位资源的位置&#xff0c;包括文件、目录、网页等。在本文中&#xff0c;我们将介…...

解决vue3项目打包后部署后某些静态资源图片不加载问题

目录 问题 原因 解决方案 问题 开发完项目打包并部署 然后访问时发现导航栏背景图片没加载 打开浏览器控制台发现这张图片报错404 原因 可能是因为在部署后的服务器环境中对中文文件名的支持不完善。服务器在解析 URL 时可能无法正确识别或编码中文字符&#xff0c;导致无…...

传感网应用开发教程--AT指令访问新大陆云平台(ESP8266模块+物联网云+TCP)

实现目标 1、熟悉AT指令 2、熟悉新大陆云平台新建项目 3、具体目标&#xff1a;&#xff08;1&#xff09;注册新大陆云平台&#xff1b;&#xff08;2&#xff09;新建一个联网方案为WIFI的项目&#xff1b;&#xff08;3&#xff09;ESP8266模块&#xff0c;通过AT指令访问…...

项目提交到空的git仓库流程

流程&#xff1a; # 初始化 Git 仓库 git init # 如果遇到 "detected dubious ownership" 的错误&#xff0c;可以添加 safe.directory 配置以解决 git config --global --add safe.directory T:/project/xxx # 将当前目录下的所有文件添加到 Git 暂存区 git add . …...

【Python】在Windows Server上部署Flask后端服务器

想要在Windows Server上部署flask应用&#xff0c;当然不能只下一个anaconda配完环境之后直接启动py文件&#xff0c;这样的话后台会有一段警告&#xff1a; * Serving Flask app app* Debug mode: off WARNING: This is a development server. Do not use it in a production …...

机器学习作业4——朴素贝叶斯分类器

目录 一、理论 一个例子&#xff1a; 二、代码 对于代码的解释&#xff1a; 1.fit函数&#xff1a; 2.predict函数: 三、实验结果 原因分析&#xff1a; 一、理论 朴素贝叶斯分类器基于贝叶斯定理进行分类&#xff0c;通过后验概率来判断将新数据归为哪一类。通过利用贝…...

BUU-[GXYCTF2019]Ping Ping Ping

考察点 命令执行 题目 解题 简单测试 ?ip应该是一个提示&#xff0c;那么就测试一下?ip127.0.0.1 http://0c02a46a-5ac2-45f5-99da-3d1b0b951307.node4.buuoj.cn:81/?ip127.0.0.1发现正常回显 列出文件 那么猜测一下可能会有命令执行漏洞&#xff0c;测试?ip127.0.…...

代码随想录Day 41|Leetcode|Python|198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

198.打家劫舍 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警。 给定一个代表每个…...

【吴恩达机器学习-week2】多个变量的特征缩放和学习率问题

特征缩放和学习率&#xff08;多变量&#xff09; 目标 利用上一个实验中开发的多变量例程在具有多个特征的数据集上运行梯度下降探索学习率对梯度下降的影响通过 Z 分数归一化进行特征缩放&#xff0c;提高梯度下降的性能 import numpy as np np.set_printoptions(precisio…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...