当前位置: 首页 > news >正文

神经网络复习--神经网络算法模型及BP算法

文章目录

  • 神经网络模型的构成
  • BP神经网络

神经网络模型的构成

三种表示方式:
在这里插入图片描述
神经网络的三要素:

  1. 具有突触或连接,用权重表示神经元的连接强度
  2. 具有时空整合功能的输入信号累加器
  3. 激励函数用于限制神经网络的输出

感知神经网络
在这里插入图片描述

BP神经网络

BP神经网络的学习由信息的正向传播和误差的反向传播两个过程组成,学习规则采用W-H学习规则(最小均方差,梯度下降法),通过反向传播,不断调整网络的权重和阈值,使得网络的误差平方和最小。

BP神经网络模型通用描述:
z ( k ) = w ( k ) x ( k ) + b ( k ) y ( k ) = f ( z ( k ) ) z^{(k)} = w^{(k)}x^{(k)} + b^{(k)} \\y^{(k)} = f(z^{(k)}) z(k)=w(k)x(k)+b(k)y(k)=f(z(k))

o ( k ) = f ( w ( k ) o ( k − 1 ) + b ( k ) ) o^{(k)} = f(w^{(k)}o^{(k - 1)} + b^{(k)}) o(k)=f(w(k)o(k1)+b(k))

损失函数的构建 E = 1 2 n ∑ p = 1 n ( T p − Q p ) 2 E = \frac{1}{2n} \sum\limits_{p=1}^{n}(T_p - Q_p)^2 E=2n1p=1n(TpQp)2
预测的输出值减期望的输出值的均方差

梯度下降法:
W ( k + 1 ) = W k − a ∗ α α w k ∗ E ( w k , b k ) b ( k + 1 ) = b k = a ∗ α α b k ∗ E ( w k , b k ) W_{(k +1)} = W_{k} - a * \frac{\alpha}{\alpha w_k} * E(w_k, b_k) \\ b_{(k + 1)} = b_k = a * \frac{\alpha}{\alpha b_k} * E(w_k, b_k) W(k+1)=WkaαwkαE(wk,bk)b(k+1)=bk=aαbkαE(wk,bk)

而:
α α w k ∗ E = 1 2 m ∗ ∑ i = 1 m ∗ 2 ∗ ( w k x i + b − y i ) ∗ x i α α b k ∗ E = 1 2 m ∗ ∑ i = 1 m ∗ 2 ∗ ( w k x i + b − y i ) \frac{\alpha}{\alpha w_k} * E = \frac{1}{2m} * \sum\limits_{i = 1}^{m} *2 * (w_k x^i + b - y^i) * x^i \\ \frac{\alpha}{\alpha b_k} * E = \frac{1}{2m} * \sum\limits_{i = 1}^{m} *2 * (w_k x^i + b - y^i) αwkαE=2m1i=1m2(wkxi+byi)xiαbkαE=2m1i=1m2(wkxi+byi)

当采用sigmoid激活函数:
导数: f ′ ( n e t j l ) = f ( n e t j l ) ( 1 − f ( n e t j l ) ) f'(net^l_j) = f(net^l_j)(1 - f(net^l_j)) f(netjl)=f(netjl)(1f(netjl))
( 1 1 + e − z ) ′ = ( 1 1 + e − z ) ∗ ( 1 − 1 1 + e − z ) (\frac{1}{1 + e^{-z}})' = (\frac{1}{1 + e^{-z}}) * (1 - \frac{1}{1 + e^{-z}}) (1+ez1)=(1+ez1)(11+ez1)
对于交叉熵损失函数有:
在这里插入图片描述
例题:
给定神经网络如下:
在这里插入图片描述
输入值为:x1, x2 = 0.5, 0.3
期望输出值为y1, y2 = 0.23, -0.07
给出正向传播的初始参数为 w 1 w_1 w1~ w 8 w_8 w8为0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
采用平方损失函数,梯度下降法求解第一轮更新后的参数。

在这里插入图片描述

训练步骤

  1. 表达:计算训练的输出矢量 A = W ∗ P + B A = W * P + B A=WP+B,以及与期望输出之间的误差;
  2. 检查:将网络输出误差的平方和与期望误差相比较,如果其值小于期望误差,或训练以达到实现设定的最大训练次数,则停止训练;否则继续。
  3. 学习:采用最小均方差和梯度下降方法计算权值和偏差,并返回到1

BP算法的改进

  1. 带动量因子算法
  2. 自适应学习速率
  3. 改变学习速率的方法
  4. 作用函数后缩法
  5. 改变性能指标函数

相关文章:

神经网络复习--神经网络算法模型及BP算法

文章目录 神经网络模型的构成BP神经网络 神经网络模型的构成 三种表示方式: 神经网络的三要素: 具有突触或连接,用权重表示神经元的连接强度具有时空整合功能的输入信号累加器激励函数用于限制神经网络的输出 感知神经网络 BP神经网络 …...

【Java】/*方法的使用-快速总结*/

目录 一、什么是方法 二、方法的定义 三、实参和形参的关系 四、方法重载 五、方法签名 一、什么是方法 Java中的方法可以理解为C语言中的函数,只是换了个名称而已。 二、方法的定义 1. 语法格式: public static 返回类型 方法名 (形参列表) { //方…...

kotlin中协程相关

协程 用同步的方式写出异步的效果协程最重要的是通过非阻塞挂起和恢复实现了异步代码的同步编写方式挂起函数(suspend)不一定就是在子线程中执行的,但是通常在定义挂起函数时都会为它指定其他线程,这样挂起才有意义解决多层嵌套回调 协程不是线程&…...

(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目

(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目PbootCMS内核开发的网站模板,该模板适用于物流运输网站、仓储货运网站等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可;自适应手机端,同一个后台…...

Navicat导出表结构到Excel或Word

文章目录 sql语句复制到excel复制到Word sql语句 SELECTcols.COLUMN_NAME AS 字段,cols.COLUMN_TYPE AS 数据类型,IF(pks.CONSTRAINT_TYPE PRIMARY KEY, YES, NO) AS 是否为主键,IF(idxs.INDEX_NAME IS NOT NULL, YES, NO) AS 是否为索引,cols.IS_NULLABLE AS 是否为空,cols.…...

Golang编译优化——稀疏条件常量传播

文章目录 一、概述二、稀疏条件常量传播2.1 初始化worklist2.2 构建def-use链2.3 更新值的lattice2.4 传播constant值2.5 替换no-constant值 一、概述 常量传播(constant propagation)是一种转换,对于给定的关于某个变量 x x x和一个常量 c …...

人工智能培训讲师咨询叶梓介绍及智能医疗技术与ChatGPT临床应用三日深度培训提纲

1、授课老师简介 叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的…...

HCIP(BGP综合实验)--8

一:实验要求 二:实现过程 (一)配置IP地址: AR1: [AR1]int g0/0/0 [AR1-GigabitEthernet0/0/0]ip add 12.1.1.1 24 [AR1-GigabitEthernet0/0/0]int l0 [AR1-LoopBack0]ip add 172.16.0.1 32 [AR1-LoopBack0]int l1 […...

深入理解C++中的Vector容器:用容器构建高效程序

文章目录 vector介绍vector常用的成员函数有关vector定义的函数vector的迭代器使用vector关于空间操作的成员函数vector的增删查改 总结 vector介绍 在C语言的库中包含有公共数据结构的实现,C的这个部分内容就是众所周知的STL(标准模版库)&a…...

目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(下)

目录 3.2 基于空洞卷积的特征融合模块设计 3.3 改进k-means聚类算法的anchor尺寸优化设计...

react 类组件 和 函数组件 声明周期 对比

React 的类组件和函数组件在生命周期方面存在一些差异。以下是它们之间的对比: 类组件的生命周期 React 类组件的生命周期可以分为三个阶段:挂载、更新和卸载。 1、挂载阶段: constructor():组件实例化时调用,用于…...

智慧变电站守护者:TSINGSEE青犀AI视频智能管理系统引领行业革新

一、方案概述 随着科技的不断进步,人工智能(AI)技术已经深入到各个领域。在变电站安全监控领域,引入AI视频监控智能分析系统,可以实现对站内环境、设备状态的实时监控与智能分析,从而提高变电站的安全运行…...

【Ubuntu20.04安装java-8-openjdk】

1 下载 官网下载链接: https://www.oracle.com/java/technologies/downloads/#java8 下载 最后一行 jdk-8u411-linux-x64.tar.gz,并解压: tar -zxvf jdk-8u411-linux-x64.tar.gz2 环境配置 1、打开~/.bashrc文件 sudo gedit ~/.bashrc2、…...

HTTPS对于网站到底价值几何?

现在HTTPS基本上已经是网站的标配了,很少会遇到单纯使用HTTP的网站。但是十年前这还是另一番景象,当时只有几家大型互联网公司的网站会使用HTTPS,大部分使用的都还是简单的HTTP,这一切是怎么发生的呢? 为什么要把网站…...

Docker私有仓库Harbor

简介 Docker私有仓库Harbor是一个开源的、企业级的Docker registry解决方案,它提供了安全、可靠和高效的容器镜像存储和分发服务。以下是关于Docker私有仓库Harbor的详细介绍: 一、Harbor的特点 基于角色的访问控制(RBAC)&#…...

48. 旋转图像/240. 搜索二维矩阵 II

48. 旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 : 输入:matrix [[5,1,9,11],[2,4,…...

wsl安装Xfce桌面并设置系统语言和输入法

一、安装xfce (有相关的依赖都会安装) sudo apt -y install xfce4 二、 安装远程连接组件 sudo apt install xrdp -y 并重新启动 Xrdp 服务: sudo systemctl restart xrdp 本地windows系统中请按 winR 键 呼出运行 在运行中输入 mstsc…...

短信清空了!华为手机短信删除了怎么恢复?

“有没有人知道这是怎么回事呀,原先有一千多条未读一直放着没管,昨天根本没打开短信这个软件,今晚突然发现只剩一条了,是华为手机自动清理了吗!到底该怎么恢复呀?我真崩溃!” 在日常生活中&…...

Linux实现Flappy bird项目

目录 1、项目介绍 2、功能总结 3、前期准备 3.1 Ncurses库 3.2 信号机制 3.2.1 设置信号响应方式 3.2.2 设置定时器 4、代码实现 4.1 头文件引用及变量、函数定义 4.2 主函数 4.3 curses初始化 4.4 设置定时器 4.5 定时器响应函数 4.6 小鸟控制相关函数 4…...

【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略

创建更加复杂的自定义交易策略 使用交易策略类,创建更复杂的自定义策略开始前的准备工作本节的目标继承Strategy类,创建一个复杂的多因子选股策略策略和回测参数配置,并开始回测 本节回顾 使用交易策略类,创建更复杂的自定义策略 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...