polars学习-03 数据类型转换
背景
polars学习系列文章,第3篇 数据类型转换。
该系列文章会分享到github,大家可以去下载jupyter文件
仓库地址:https://github.com/DataShare-duo/polars_learn
小编运行环境
import sysprint('python 版本:',sys.version.split('|')[0])
#python 版本: 3.11.5 import polars as plprint("polars 版本:",pl.__version__)
#polars 版本: 0.20.22
数据类型转换
数据类型转换,主要是通过 cast
方法来进行操作,该方法中有个参数 strict
,该参数决定当原数据类型不能转换为目标数据类型时,应该如何处理
- 严格模式,
strict=True
(该参数默认是True),就会进行报错,打印出详细的错误信息 - 非严格模式,
strict=False
,不会报错,无法转换为目标数据类型的值都会被置为null
pandas
中数据类型转换使用的是 astype
方法
示例
数值类型 Numerics
浮点型数值转换为整型时,会向下取整;大范围的数据类型转换为小范围数据类型时,如果数值溢出时,默认会报错,如果设置了 strict=False
,则会被置为 null
df = pl.DataFrame({"integers": [1, 2, 3, 4, 5],"big_integers": [1, 10000002, 3, 10000004, 10000005],"floats": [4.0, 5.0, 6.0, 7.0, 8.0],"floats_with_decimal": [4.532, 5.5, 6.5, 7.5, 8.5],}
)print(df)
shape: (5, 4)
┌──────────┬──────────────┬────────┬─────────────────────┐
│ integers ┆ big_integers ┆ floats ┆ floats_with_decimal │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 ┆ f64 │
╞══════════╪══════════════╪════════╪═════════════════════╡
│ 1 ┆ 1 ┆ 4.0 ┆ 4.532 │
│ 2 ┆ 10000002 ┆ 5.0 ┆ 5.5 │
│ 3 ┆ 3 ┆ 6.0 ┆ 6.5 │
│ 4 ┆ 10000004 ┆ 7.0 ┆ 7.5 │
│ 5 ┆ 10000005 ┆ 8.0 ┆ 8.5 │
└──────────┴──────────────┴────────┴─────────────────────┘out=df.select(pl.col("integers").cast(pl.Float32).alias("integers_as_floats"),pl.col("floats").cast(pl.Int32).alias("floats_as_integers"),pl.col("floats_with_decimal").cast(pl.Int32).alias("floats_with_decimal_as_integers"))print(out)
shape: (5, 3)
┌────────────────────┬────────────────────┬─────────────────────────────────┐
│ integers_as_floats ┆ floats_as_integers ┆ floats_with_decimal_as_integers │
│ --- ┆ --- ┆ --- │
│ f32 ┆ i32 ┆ i32 │
╞════════════════════╪════════════════════╪═════════════════════════════════╡
│ 1.0 ┆ 4 ┆ 4 │
│ 2.0 ┆ 5 ┆ 5 │
│ 3.0 ┆ 6 ┆ 6 │
│ 4.0 ┆ 7 ┆ 7 │
│ 5.0 ┆ 8 ┆ 8 │
└────────────────────┴────────────────────┴─────────────────────────────────┘#如果不溢出的类型转换,可以节省内存
out=df.select(pl.col("integers").cast(pl.Int16).alias("integers_smallfootprint"),pl.col("floats").cast(pl.Float32).alias("floats_smallfootprint"),)print(out)
shape: (5, 2)
┌─────────────────────────┬───────────────────────┐
│ integers_smallfootprint ┆ floats_smallfootprint │
│ --- ┆ --- │
│ i16 ┆ f32 │
╞═════════════════════════╪═══════════════════════╡
│ 1 ┆ 4.0 │
│ 2 ┆ 5.0 │
│ 3 ┆ 6.0 │
│ 4 ┆ 7.0 │
│ 5 ┆ 8.0 │
└─────────────────────────┴───────────────────────┘try:out = df.select(pl.col("big_integers").cast(pl.Int8))print(out)
except Exception as e:print(e)
#conversion from `i64` to `i8` failed in column 'big_integers' for 3 out of 5 values: [10000002, 10000004, 10000005]out=df.select(pl.col("big_integers").cast(pl.Int8, strict=False))
print(out)
shape: (5, 1)
┌──────────────┐
│ big_integers │
│ --- │
│ i8 │
╞══════════════╡
│ 1 │
│ null │
│ 3 │
│ null │
│ null │
└──────────────┘
字符串类型 Strings
df = pl.DataFrame({"integers": [1, 2, 3, 4, 5],"float": [4.0, 5.03, 6.0, 7.0, 8.0],"floats_as_string": ["4.0", "5.0", "6.0", "7.0", "8.0"],}
)print(df)
shape: (5, 3)
┌──────────┬───────┬──────────────────┐
│ integers ┆ float ┆ floats_as_string │
│ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ str │
╞══════════╪═══════╪══════════════════╡
│ 1 ┆ 4.0 ┆ 4.0 │
│ 2 ┆ 5.03 ┆ 5.0 │
│ 3 ┆ 6.0 ┆ 6.0 │
│ 4 ┆ 7.0 ┆ 7.0 │
│ 5 ┆ 8.0 ┆ 8.0 │
└──────────┴───────┴──────────────────┘out=df.select(pl.col("integers").cast(pl.String),pl.col("float").cast(pl.String),pl.col("floats_as_string").cast(pl.Float64),)print(out)
shape: (5, 3)
┌──────────┬───────┬──────────────────┐
│ integers ┆ float ┆ floats_as_string │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 │
╞══════════╪═══════╪══════════════════╡
│ 1 ┆ 4.0 ┆ 4.0 │
│ 2 ┆ 5.03 ┆ 5.0 │
│ 3 ┆ 6.0 ┆ 6.0 │
│ 4 ┆ 7.0 ┆ 7.0 │
│ 5 ┆ 8.0 ┆ 8.0 │
└──────────┴───────┴──────────────────┘df = pl.DataFrame({"strings_not_float": ["4.0", "not_a_number", "6.0", "7.0", "8.0"]})
print(df)
shape: (5, 1)
┌───────────────────┐
│ strings_not_float │
│ --- │
│ str │
╞═══════════════════╡
│ 4.0 │
│ not_a_number │
│ 6.0 │
│ 7.0 │
│ 8.0 │
└───────────────────┘#运行会报错
out=df.select(pl.col("strings_not_float").cast(pl.Float64))#设置非严格模式,忽略错误,置为null
out=df.select(pl.col("strings_not_float").cast(pl.Float64,strict=False))
print(out)
shape: (5, 1)
┌───────────────────┐
│ strings_not_float │
│ --- │
│ f64 │
╞═══════════════════╡
│ 4.0 │
│ null │
│ 6.0 │
│ 7.0 │
│ 8.0 │
└───────────────────┘
布尔类型 Booleans
数值型与布尔型可以相互转换,但是不允许字符型转换为布尔型
df = pl.DataFrame({"integers": [-1, 0, 2, 3, 4],"floats": [0.0, 1.0, 2.0, 3.0, 4.0],"bools": [True, False, True, False, True],}
)print(df)
shape: (5, 3)
┌──────────┬────────┬───────┐
│ integers ┆ floats ┆ bools │
│ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ bool │
╞══════════╪════════╪═══════╡
│ -1 ┆ 0.0 ┆ true │
│ 0 ┆ 1.0 ┆ false │
│ 2 ┆ 2.0 ┆ true │
│ 3 ┆ 3.0 ┆ false │
│ 4 ┆ 4.0 ┆ true │
└──────────┴────────┴───────┘out=df.select(pl.col("integers").cast(pl.Boolean), pl.col("floats").cast(pl.Boolean))
print(out)
shape: (5, 2)
┌──────────┬────────┐
│ integers ┆ floats │
│ --- ┆ --- │
│ bool ┆ bool │
╞══════════╪════════╡
│ true ┆ false │
│ false ┆ true │
│ true ┆ true │
│ true ┆ true │
│ true ┆ true │
└──────────┴────────┘
时间类型 Dates
Date
或 Datetime
等时间数据类型表示为自纪元(1970年1月1日)以来的天数(Date
)和微秒数(Datetime
),因此数值类型与时间数据类型能直接相互转换
字符串类型与时间类型,可以通过 dt.to_string、str.to_datetime进行相互转换
from datetime import date, datetimedf = pl.DataFrame({"date": pl.date_range(date(2022, 1, 1), date(2022, 1, 5), eager=True),"datetime": pl.datetime_range(datetime(2022, 1, 1), datetime(2022, 1, 5), eager=True),}
)print(df)
shape: (5, 2)
┌────────────┬─────────────────────┐
│ date ┆ datetime │
│ --- ┆ --- │
│ date ┆ datetime[μs] │
╞════════════╪═════════════════════╡
│ 2022-01-01 ┆ 2022-01-01 00:00:00 │
│ 2022-01-02 ┆ 2022-01-02 00:00:00 │
│ 2022-01-03 ┆ 2022-01-03 00:00:00 │
│ 2022-01-04 ┆ 2022-01-04 00:00:00 │
│ 2022-01-05 ┆ 2022-01-05 00:00:00 │
└────────────┴─────────────────────┘out=df.select(pl.col("date").cast(pl.Int64),pl.col("datetime").cast(pl.Int64))print(out)
shape: (5, 2)
┌───────┬──────────────────┐
│ date ┆ datetime │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═══════╪══════════════════╡
│ 18993 ┆ 1640995200000000 │
│ 18994 ┆ 1641081600000000 │
│ 18995 ┆ 1641168000000000 │
│ 18996 ┆ 1641254400000000 │
│ 18997 ┆ 1641340800000000 │
└───────┴──────────────────┘df = pl.DataFrame({"date": pl.date_range(date(2022, 1, 1), date(2022, 1, 5), eager=True),"string": ["2022-01-01","2022-01-02","2022-01-03","2022-01-04","2022-01-05",],}
)print(df)
shape: (5, 2)
┌────────────┬────────────┐
│ date ┆ string │
│ --- ┆ --- │
│ date ┆ str │
╞════════════╪════════════╡
│ 2022-01-01 ┆ 2022-01-01 │
│ 2022-01-02 ┆ 2022-01-02 │
│ 2022-01-03 ┆ 2022-01-03 │
│ 2022-01-04 ┆ 2022-01-04 │
│ 2022-01-05 ┆ 2022-01-05 │
└────────────┴────────────┘out=df.select(pl.col("date").dt.to_string("%Y-%m-%d"),pl.col("string").str.to_datetime("%Y-%m-%d"),pl.col("string").str.to_date("%Y-%m-%d").alias("string_to_data")
)print(out)
shape: (5, 3)
┌────────────┬─────────────────────┬────────────────┐
│ date ┆ string ┆ string_to_data │
│ --- ┆ --- ┆ --- │
│ str ┆ datetime[μs] ┆ date │
╞════════════╪═════════════════════╪════════════════╡
│ 2022-01-01 ┆ 2022-01-01 00:00:00 ┆ 2022-01-01 │
│ 2022-01-02 ┆ 2022-01-02 00:00:00 ┆ 2022-01-02 │
│ 2022-01-03 ┆ 2022-01-03 00:00:00 ┆ 2022-01-03 │
│ 2022-01-04 ┆ 2022-01-04 00:00:00 ┆ 2022-01-04 │
│ 2022-01-05 ┆ 2022-01-05 00:00:00 ┆ 2022-01-05 │
└────────────┴─────────────────────┴────────────────┘
历史相关文章
- Python polars学习-01 读取与写入文件
- Python polars学习-02 上下文与表达式
- Python pandas 里面的数据类型坑,astype要慎用
- Python pandas.str.replace 不起作用
以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货
相关文章:
polars学习-03 数据类型转换
背景 polars学习系列文章,第3篇 数据类型转换。 该系列文章会分享到github,大家可以去下载jupyter文件 仓库地址:https://github.com/DataShare-duo/polars_learn 小编运行环境 import sysprint(python 版本:,sys.version.spli…...

IDC 权威认可!Aloudata 入选金融领域中数据管理分析服务最佳实践案例
近日,国际知名数据咨询机构 IDC 重磅发布了《IDC PeerScape:金融领域中数据管理分析服务最佳实践案例》报告,Aloudata 与招商银行联合打造的 DDH 数据研发运维一体化平台成功入选,Aloudata 的技术、产品实力,以及在金融…...
RSA与AES算法比较及应用场景推荐
摘要:在现代加密通信中,RSA算法和AES算法被广泛应用。RSA算法是一种非对称加密算法,而AES算法是一种对称加密算法。本文将对比分析这两种算法的原理、性能及适用场景,并给出相应的推荐建议。 一、RSA算法简介 RSA算法࿰…...

揭秘 HTTP 代理:增强在线活动的安全性和匿名性
HTTP 代理在保护您的在线隐私、增强安全性以及允许访问受限内容方面发挥着关键作用。了解 HTTP 代理的工作原理以及如何有效地利用它们可以让您掌控自己的在线状态和浏览体验。让我们深入研究 HTTP 代理的世界,探索它们的优势、应用程序以及最大化其效用的最佳实践。…...
【经验】mysql冷热数据分离
使用mysql存储时,为了提升数据的查询效率,降低磁盘存储压力等,我们常常使用"冷热数据分离"分离的方案。即,将数据从所谓的“热表”(即经常有写入和查询操作的活跃表)迁移到“冷表”(用…...

【机器学习-06】Scikit-Learn机器学习工具包进阶指南:机器学习分类模型实战与数据可视化分析
🎩 欢迎来到技术探索的奇幻世界👨💻 📜 个人主页:一伦明悦-CSDN博客 ✍🏻 作者简介: C软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论 &…...
蓝桥杯国赛每日一题:日志统计(双指针)
题目描述: 小明维护着一个程序员论坛。现在他收集了一份”点赞”日志,日志共有 N行。 其中每一行的格式是: ts id 表示在 ts时刻编号 id 的帖子收到一个”赞”。 现在小明想统计有哪些帖子曾经是”热帖”。 如果一个帖子曾在任意一个长…...
佛山MES公司(盈致mes系统服务商)助力企业实现智能制造
佛山是中国制造业著名的城市之一,拥有众多制造企业。随着科技的不断发展和智能制造的兴起,越来越多的企业开始意识到数字化生产管理的重要性,MES制造执行系统作为智能制造的关键技术之一,受到了越来越多企业的关注和应用。 在佛山…...

算法设计课第五周(贪心法实现活动选择问题)
目录 一、【实验目的】 二、【实验内容】 三、实验源代码 一、【实验目的】 (1)熟悉贪心法的设计思想 (2)理解贪心法的最优解与正确性证明之间的关系 (3)比较活动选择的各种“贪心”策略,…...

Ubuntu20.04右键打不开终端
今天用virtualbox安装了ubuntu20.04 问题:右键打开终端,怎么也打开不了! 点了也没反应,或者鼠标转小圈圈,然后也没有反应… 解决方法: 1、Ctrl Alt F6 先切换到终端访问界面 mac电脑 Ctrl Alt F6 …...
XML元素
XML 元素是XML文档中的基本组成单位,它由开始标签、结束标签和内容组成,格式如下: <element>content</element>常见的XML元素包括: 根元素(Root Element):XML文档中的最外层元素&…...

融入新科技的SLM27211系列 120V, 3A/4.5A高低边高频门极驱动器兼容UCC27284,MAX15013A
SLM27211是高低边高频门极驱动器,集成了120V的自举二极管,支持高频大电流的输出,可在8V~17V的宽电压范围内驱动MOSFET,独立的高、低边驱动以方便控制,可用于半桥、全桥、双管正激和有源钳位正激等拓。有极好的开通、关…...

代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 文章目录 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯理论基础一、常规题目二、解题步骤…...

CSS拟物按钮
<div class"btn">F</div>.btn {margin: 150px 0 0 150px;display: flex;justify-content: center;align-items: center;width: 100px;height: 100px;background-color: #fff;border-radius: 20px;font-size: 50px;color: #333;/* 禁止选中文本 */user-se…...

websevere服务器从零搭建到上线(三)|IO多路复用小总结和服务器的基础框架
文章目录 epollselect和poll的优缺点epoll的原理以及优势epoll 好的网络服务器设计Reactor模型图解Reactor muduo库的Multiple Reactors模型 epoll select和poll的优缺点 1、单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数…...

解决宝塔Nginx和phpMyAdmin配置端口冲突问题
问题描述 在对基于宝塔面板的 Nginx 配置文件进行端口修改时,我注意到 phpMyAdmin 的端口配置似乎也随之发生了变化! 解决方法 官方建议在处理 Nginx 配置时,应避免直接修改默认的配置文件,以确保系统的稳定性和简化后续的维护…...

光伏EPC管理软件都有哪些功能和作用?
光伏EPC管理软件是用于光伏工程项目管理的综合性工具,它涵盖了从项目策划、设计、采购、施工到运维的各个环节。 1、项目总览 管理所有项目计划,包括项目类型、项目容量等。 调整和优化项目计划,以应对不可预见的情况。 2、施工管理 制定…...

BGP学习一:关于对等体建立和状态组改变
目录 一.BGP基本概念 (1).BGP即是协议也是分类 1.早期EGP 2.BGP满足不同需求 3.BGP区域间传输的优势 (1)安全性——只传递路由信息 (2)跨网段建立邻居 4.BGP总结 5.BGP的应用 (1&#…...

ETL工具kettle(PDI)入门教程,Transform,Mysql->Mysql,Csv->Excel
什么是kettle,kettle的下载,安装和配置:ETL免费工具kettle(PDI),安装和配置-CSDN博客 mysql安装配置:Linux Centos8 Mysql8.3.0安装_linux安装mysql8.3-CSDN博客 1 mysql -> mysql 1.1 mysql CREATE TABLE user_…...
常见地图坐标系间的转换算法JavaScript实现
文章目录 🍉 不同的地图厂商使用不同的坐标系来表示地理位置。以下简述:🍉 前置常量和方法:🍉 BD-09转GCJ-02(百度转谷歌、高德)🍉 GCJ-02转BD-09(谷歌、高德转百度)🍉 WGS84转GCJ-02(WGS84转谷歌、高德)🍉 GCJ-02转WGS84(谷歌、高德转WGS84)🍉 BD-09转wgs84坐…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...