大模型训练框架DeepSpeed使用入门(1): 训练设置
文章目录
- 一、安装
- 二、训练设置
- Step1 第一步参数解析
- Step2 初始化后端
- Step3 训练初始化
- 三、训练代码展示
官方文档直接抄过来,留个笔记。
https://deepspeed.readthedocs.io/en/latest/initialize.html
使用案例来自:
https://github.com/OvJat/DeepSpeedTutorial
大模型训练的痛点是模型参数过大,动辄上百亿,如果单靠单个GPU来完成训练基本不可能。所以需要多卡或者分布式训练来完成这项工作。
DeepSpeed是由Microsoft提供的分布式训练工具,旨在支持更大规模的模型和提供更多的优化策略和工具。对于更大模型的训练来说,DeepSpeed提供了更多策略,例如:Zero、Offload等。
本文简单介绍下如何使用DeepSpeed。
一、安装
pip install deepspeed
二、训练设置
Step1 第一步参数解析
DeepSpeed 使用 argparse 来应用控制台的设置,使用
deepspeed.add_config_arguments()
可以将DeepSpeed内置的参数增加到我们自己的应用参数解析中。
parser = argparse.ArgumentParser(description='My training script.')
parser.add_argument('--local_rank', type=int, default=-1,help='local rank passed from distributed launcher')
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
cmd_args = parser.parse_args()
Step2 初始化后端
与Step3中的 deepspeed.initialize() 不同,
直接调用即可。
一般发生在以下场景
when using model parallelism, pipeline parallelism, or certain data loader scenarios.
在Step3的initialize前,进行调用
deepspeed.init_distributed()
Step3 训练初始化
首先调用 deepspeed.initialize() 进行初始化,是整个调用DeepSpeed训练的入口。
调用后,如果分布式后端没有被初始化后,此时会初始化分布式后端。
使用案例:
model_engine, optimizer, _, _ = deepspeed.initialize(args=cmd_args,model=net,model_parameters=net.parameters(),training_data=ds)
API如下:
def initialize(args=None,model: torch.nn.Module = None,optimizer: Optional[Union[Optimizer, DeepSpeedOptimizerCallable]] = None,model_parameters: Optional[torch.nn.Module] = None,training_data: Optional[torch.utils.data.Dataset] = None,lr_scheduler: Optional[Union[_LRScheduler, DeepSpeedSchedulerCallable]] = None,distributed_port: int = TORCH_DISTRIBUTED_DEFAULT_PORT,mpu=None,dist_init_required: Optional[bool] = None,collate_fn=None,config=None,config_params=None):"""Initialize the DeepSpeed Engine.Arguments:args: an object containing local_rank and deepspeed_config fields.This is optional if `config` is passed.model: Required: nn.module class before apply any wrappersoptimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object.This overrides any optimizer definition in the DeepSpeed json config.model_parameters: Optional: An iterable of torch.Tensors or dicts.Specifies what Tensors should be optimized.training_data: Optional: Dataset of type torch.utils.data.Datasetlr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object.The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methodsdistributed_port: Optional: Master node (rank 0)'s free port that needs to be used for communication during distributed trainingmpu: Optional: A model parallelism unit object that implementsget_{model,data}_parallel_{rank,group,world_size}()dist_init_required: Optional: None will auto-initialize torch distributed if needed,otherwise the user can force it to be initialized or not via boolean.collate_fn: Optional: Merges a list of samples to form amini-batch of Tensor(s). Used when using batched loading from amap-style dataset.config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed configas an argument instead, as a path or a dictionary.config_params: Optional: Same as `config`, kept for backwards compatibility.Returns:A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler``* ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training.* ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or ifoptimizer is specified in json config else ``None``.* ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied,otherwise ``None``.* ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, orif ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``."""
三、训练代码展示
def parse_arguments():import argparseparser = argparse.ArgumentParser(description='deepspeed training script.')parser.add_argument('--local_rank', type=int, default=-1,help='local rank passed from distributed launcher')# Include DeepSpeed configuration argumentsparser = deepspeed.add_config_arguments(parser)args = parser.parse_args()return argsdef train():args = parse_arguments()# init distributeddeepspeed.init_distributed()# init modelmodel = MyClassifier(3, 100, ch_multi=128)# init datasetds = MyDataset((3, 512, 512), 100, sample_count=int(1e6))# init engineengine, optimizer, training_dataloader, lr_scheduler = deepspeed.initialize(args=args,model=model,model_parameters=model.parameters(),training_data=ds,# config=deepspeed_config,)# load checkpointengine.load_checkpoint("./data/checkpoints/MyClassifier/")# trainlast_time = time.time()loss_list = []echo_interval = 10engine.train()for step, (xx, yy) in enumerate(training_dataloader):step += 1xx = xx.to(device=engine.device, dtype=torch.float16)yy = yy.to(device=engine.device, dtype=torch.long).reshape(-1)outputs = engine(xx)loss = tnf.cross_entropy(outputs, yy)engine.backward(loss)engine.step()loss_list.append(loss.detach().cpu().numpy())if step % echo_interval == 0:loss_avg = np.mean(loss_list[-echo_interval:])used_time = time.time() - last_timetime_p_step = used_time / echo_intervalif args.local_rank == 0:logging.info("[Train Step] Step:{:10d} Loss:{:8.4f} | Time/Batch: {:6.4f}s",step, loss_avg, time_p_step,)last_time = time.time()# save checkpointengine.save_checkpoint("./data/checkpoints/MyClassifier/")
最后~
码字不易~~
独乐不如众乐~~
如有帮助,欢迎点赞+收藏~~
相关文章:
大模型训练框架DeepSpeed使用入门(1): 训练设置
文章目录 一、安装二、训练设置Step1 第一步参数解析Step2 初始化后端Step3 训练初始化 三、训练代码展示 官方文档直接抄过来,留个笔记。 https://deepspeed.readthedocs.io/en/latest/initialize.html 使用案例来自: https://github.com/OvJat/DeepSp…...
自定义类型——结构体、枚举和联合
自定义类型——结构体、枚举和联合 结构体结构体的声明匿名结构体结构体的自引用结构体的初始化结构体的内存对齐修改默认对齐数结构体传参 位段枚举联合 结构体 结构是一些值的集合,这些值被称为成员变量,结构的每个成员可以是不同类型的变量。 数组是…...
Windows11系统安装Mysql8之后,启动服务net start mysql报错“服务没有响应控制功能”的解决办法
问题 系统环境:Windows11 数据库版本:Mysql8 双击安装,一路下一步,完成,很顺利,但是开启服务后 net start mysql 报错: 服务没有响应控制功能。 请键入 NET HELPMSG 2186 以获得更多的帮助 不…...
WIFI模块的AT指令联网数据交互--第十天
1.1.蓝牙,ESP-01s,Zigbee, NB-Iot等通信模块都是基于AT指令的设计 初始配置和验证 ESP-01s出厂波特率正常是115200, 注意:AT指令,控制类都要加回车,数据传输时不加回车 1.2.上电后,通过串口输出一串系统…...
设计模式Java实现-迭代器模式
✨这里是第七人格的博客✨小七,欢迎您的到来~✨ 🍅系列专栏:设计模式🍅 ✈️本篇内容: 迭代器模式✈️ 🍱 本篇收录完整代码地址:https://gitee.com/diqirenge/design-pattern 🍱 楔子 很久…...
单页源码加密屋zip文件加密API源码
简介: 单页源码加密屋zip文件加密API源码 api源码里面的参数已改好,往服务器或主机一丢就行,出现不能加密了就是加密次数达到上限了,告诉我在到后台修改加密次数 点击下载...
47.全排列
1.题目 47. 全排列 II - 力扣(LeetCode)https://leetcode.cn/problems/permutations-ii/description/ 2.思路 注意剪枝的条件 3.代码 class Solution {vector<int> path;vector<vector<int>> ret;bool check[9]; public:vector<…...
呼叫中心系统选pscc好还是okcc好
选择PSCC(商业软件呼叫中心)还是OKCC(开源呼叫中心),应基于以下几个关键因素来决定: 技术能力:如果企业拥有或愿意投入资源培养内部技术团队,开源解决方案可能更合适,因为…...
【SRC实战】前端脱敏信息泄露
挖个洞先 https://mp.weixin.qq.com/s/xnCQQCAneT21vYH8Q3OCpw “ 以下漏洞均为实验靶场,如有雷同,纯属巧合 ” 01 — 漏洞证明 一、前端脱敏,请求包泄露明文 “ 前端脱敏处理,请求包是否存在泄露? ” 1、获取验…...
区块链 | NFT 水印:Review on Watermarking Techniques(三)
🍍原文:Review on Watermarking Techniques Aiming Authentication of Digital Image Artistic Works Minted as NFTs into Blockchains 一个 NFT 的水印认证协议 可以引入第三方实体来实现对交易的认证,即通过使用 R S A \mathsf{RSA} RSA…...
初识C语言——第十九天
for循环 1.简单概述 2.执行流程 3.建议事项:...
软件需求工程习题
1.(面谈)是需求获取活动中发生的需求工程师和用户间面对面的会见。 2.使用原型法进行需求获取,(演化式)原型必须具有健壮性,代码质量要从一开始就能达到最终系统的要求 3.利用面谈进行需求获取时…...
Win10弹出这个:https://logincdn.msauth.ne
问题描述: Win10脚本错误 Windows10家庭版操作系统开机后弹出这个 https://logincdn.msauth.net/shared/1.0/content/js/ConvergedLogin_PCore_vi321_9jVworKN8EONYo0A2.js 解决方法: 重启计算机后手动关闭第三方安全优化软件,然后在任务管理…...
Vue2 动态路由
VUE CLI 项目 router.js import Vue from "vue"; import Router from "vue-router"; import base from "/view/404/404.vue";const originalPush Router.prototype.push Router.prototype.push function push (location) {return originalPu…...
LeetCode746:使用最小花费爬楼梯
题目描述 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 代码 …...
DockerFile介绍与使用
一、DockerFile介绍 大家好,今天给大家分享一下关于 DockerFile 的介绍与使用,DockerFile 是一个用于定义如何构建 Docker 镜像的文本文件,具体来说,具有以下重要作用: 标准化构建:提供了一种统一、可重复…...
Java基础知识(六) 字符串
六 字符串 6.1 String字符串 1、String类对象创建 定义String类对象格式:** 1)String 字符串变量名“字符串常量”; 2)String 字符串变量名new String(字符串常量); 3)String 字符串变量名; 字符串变量名“字符串常…...
为什么跨境电商大佬都在自养号测评?看完你就懂了!
在跨境电商的激烈竞争中,各大平台如亚马逊、拼多多Temu、shopee、Lazada、wish、速卖通、煤炉、敦煌、独立站、雅虎、eBay、TikTok、Newegg、Allegro、乐天、美客多、阿里国际、沃尔玛、Nike、OZON、Target以及Joom等,纷纷成为商家们竞相角逐市场份额的焦…...
AtCoder Beginner Contest 353
A 题意:检查是否有比第一个数大的数 #include<bits/stdc.h>using namespace std;int main() {int n;cin>>n;int a;cin>>a;int f0;for(int i2;i<n;i){int k;cin>>k;if(k>a){cout<<i<<endl;f1;break;}}if(f0){cout<&l…...
深度解读《深度探索C++对象模型》之虚继承的实现分析和效率评测(一)
目录 前言 具有虚基类的对象的构造过程 通过子类的对象存取虚基类成员的实现分析 接下来我将持续更新“深度解读《深度探索C对象模型》”系列,敬请期待,欢迎左下角点击关注!也可以关注公众号:iShare爱分享,或文章末…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...
生产管理系统开发:专业软件开发公司的实践与思考
生产管理系统开发的关键点 在当前制造业智能化升级的转型背景下,生产管理系统开发正逐步成为企业优化生产流程的重要技术手段。不同行业、不同规模的企业在推进生产管理数字化转型过程中,面临的挑战存在显著差异。本文结合具体实践案例,分析…...
无头浏览器技术:Python爬虫如何精准模拟搜索点击
1. 无头浏览器技术概述 1.1 什么是无头浏览器? 无头浏览器是一种没有图形用户界面(GUI)的浏览器,它通过程序控制浏览器内核(如Chromium、Firefox)执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...
结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案
以下是一个结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案,包含完整数学推导、PyTorch/TensorFlow双框架实现代码及对比实验分析。 基于PINN的反应扩散方程稀疏数据预测与大规模数据泛化能力研究 1. 问题定义与数学模型 1.1 反应扩散方程 考虑标…...
Android多媒体——音/视频数据播放(十八)
在媒体数据完成解码并准备好之后,播放流程便进入了最终的呈现阶段。为了确保音视频内容能够顺利输出,系统需要首先对相应的播放设备进行初始化。只有在设备初始化成功后,才能真正开始音视频的同步渲染与播放。这一过程不仅影响播放的启动速度,也直接关系到播放的稳定性和用…...
