当前位置: 首页 > news >正文

peft+llama3训练自定义数据

要微调自己的模型训练 LLaMA 3,则需要准备一个 JSON 格式的数据集,其中每个条目包含输入文本和相应的标签(如果有的话)。以下是一个 JSON 数据集的示例格式:

[{"input": "这是一个输入样本。","label": "这是一个标签样本。"},{"input": "这是另一个输入样本。","label": "这是另一个标签样本。"},// 更多样本...
]

在这个格式中,每个 JSON 对象包含一个 “input” 字段和一个 “label” 字段。输入字段包含你的模型需要预测的文本,而标签字段包含相应的目标输出。如果你的任务是语言建模,那么 “label” 字段通常是 “input” 字段的延续。
以下是一个使用 JSON 数据集微调 LLaMA 3 的代码案例:

import torch
from peft import LoraConfig, TaskType, get_peft_model
from transformers import LlamaForCausalLM, LlamaTokenizer, DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments
from datasets import load_dataset
# 加载 LLaMA 3 模型和分词器
model = LlamaForCausalLM.from_pretrained("path/to/llama3/model")
tokenizer = LlamaTokenizer.from_pretrained("path/to/llama3/tokenizer")
# 设置 PEFT 的 LoraConfig
lora_config = LoraConfig(r=8,lora_alpha=32,target_modules=["q_proj", "v_proj"],task_type=TaskType.CAUSAL_LM
)
# 使用 PEFT 装饰模型
model = get_peft_model(model, lora_config)
# 加载 JSON 数据集
dataset = load_dataset('json', data_files={'train': 'path/to/train.json', 'validation': 'path/to/valid.json'})
# 准备数据集
def preprocess_data(examples):inputs = examples['input']labels = examples['label']tokenized_inputs = tokenizer(inputs, truncation=True, padding='max_length')tokenized_labels = tokenizer(labels, truncation=True, padding='max_length')tokenized_inputs['labels'] = tokenized_labels['input_ids']return tokenized_inputs
tokenized_dataset = dataset.map(preprocess_data, batched=True)
# 设置数据集格式
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# 设置训练参数
training_args = TrainingArguments(output_dir="path/to/output/directory",per_device_train_batch_size=4,per_device_eval_batch_size=4,eval_steps=400,logging_steps=100,gradient_accumulation_steps=32,num_train_epochs=3,warmup_steps=500,learning_rate=2e-4,weight_decay=0.01,save_total_limit=3,fp16=True,
)
# 创建 Trainer
trainer = Trainer(model=model,args=training_args,data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),train_dataset=tokenized_dataset['train'],eval_dataset=tokenized_dataset['validation'],
)
# 开始训练
trainer.train()
# 保存模型
model.save_pretrained("path/to/output/directory")

在这个代码案例中,我们首先加载了 LLaMA 3 模型和分词器,并设置了 PEFT 的 LoraConfig。然后,我们加载了 JSON 格式的数据集,并使用 preprocess_data 函数对其进行预处理。接着,我们设置了训练参数并创建了 Trainer 实例,最后开始训练模型并保存。

相关文章:

peft+llama3训练自定义数据

要微调自己的模型训练 LLaMA 3,则需要准备一个 JSON 格式的数据集,其中每个条目包含输入文本和相应的标签(如果有的话)。以下是一个 JSON 数据集的示例格式: [{"input": "这是一个输入样本。",&q…...

vue+ts+vite+pinia+less+echarts 前端可视化 实战项目

1.初始化前端 输入 npm init vuelatest 命令 然后 选择需要的插件2.构建完成后 在终端切换到vue-project文件夹下 npm install 下载依赖 3.下载 less样式 npm install less less-loader -D 4.下载axios npm install axios 5.下载echarts npm install echarts -S 6.引入中国…...

文心一言指令多样化,你知道的有哪些?

文心一言的指令非常多样化,可以根据用户的需求和场景进行灵活调整。以下是一些常见的文心一言指令示例: 知识问答: 帮我解释一下什么是芯片?中国的历史上有哪些重要的朝代?人工智能在未来会有哪些发展趋势?…...

QT状态机8-使用恢复策略自动恢复属性

当状态分配的属性不再活动时,可能希望将其恢复到初始值,通过设置全局的恢复策略可以使状态机进入一个状态而不用明确制定属性的值。 QStateMachine machine; machine.setGlobalRestorePolicy(QStateMachine::RestoreProperties);当设置了恢复策略以后,状态机将自动恢复所有…...

第83天: 代码审计-PHP 项目RCE 安全调试追踪代码执行命令执行

案例一:CNVD拿1day-RCE命令执行-百家CMS 这里用代码审计系统搜索system,可以利用的是第一种 打开看细节 查找函数引用 查找$_file第一次出现的地方 这个时候就明白了,必须上传文件,然后利用文件名,去执行system命令 …...

学习Uni-app开发小程序Day8

前面几天,学习了vue的button组件、input组件,vue模版语法、计算属性等,在昨天又根据前面学习的,跟着做了一个小的购物车功能,今天学习了侦听器和计算属性 计算属性 computed computed是一个只读的状态,如果要修改…...

OpenHarmony标准设备应用开发(二)——布局、动画与音乐

本章是 OpenHarmony 标准设备应用开发的第二篇文章。我们通过知识体系新开发的几个基于 OpenHarmony3.1 Beta 标准系统的样例:分布式音乐播放、传炸弹、购物车等样例,分别介绍下音乐播放、显示动画、动画转场(页面间转场)三个进阶…...

mysql字段乱序 information_schema

select COLUMN_NAME from information_schema.columns where table_namecollect_column_info and table_schema nz; 返回ASCII排列 导致 sqoop import \ --connect "jdbc:mysql://your_host/collect" \ --username your_username \ --password your_password \ --t…...

使用php和redis实现分布式锁

实现分布式锁是在分布式环境中确保资源独占性的重要手段。在这里,我将使用 PHP 和 Redis 来展示如何实现基于 Redis 的分布式锁。 首先,我们需要使用 Redis 的 SET 指令来尝试获取锁,并设置一个过期时间,确保锁不会永久存在。在 …...

大龄程序员是否要入职嵌入式python岗位?

在开始前我有一些资料,是我根据网友给的问题精心整理了一份「Python的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 是否要做嵌入式 Python 取决于…...

STL—string类(1)

一、string类 1、为什么要学习string? C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP(面向对象…...

科技查新中化工领域查新点如何确立与提炼?案例讲解!

我国化工科技查新工作始于1985年,至今经历了30多年的发展。化工类课题包含化工、炼油、 冶金、能源、轻工、石化、环境、医药、环保和军工等, 具有物质种类繁多、制备工艺复杂等特点。因此,本文结合化工查新项目实例,总结提高化工…...

国网698.45报文解析工具

本文分享一个698.45协议的报文解析工具,此报文解析工具功能强大,可以解析多种国网数据协议。 下载链接: https://pan.baidu.com/s/1ngbBG-yL8ucRWLDflqzEnQ 提取码: y1de 主要界面如下: 本工具内置698.45数据协议, 即可调用word…...

留学资讯 | 2024英国学生签证申请需要满足哪些条件?

英国移民局于2020年9月10日发布了《移民规则变更声明: HC 707》,对学生签证制度进行了全面改革。该法案于2020年10月5日正式生效。根据此法案,新的学生签证——The Student and Child Student Routes学生和儿童学生路线,将替代原先的Tier 4学…...

Python 中的分步机器学习

1.安装 Python 和 SciPy 平台。 # Check the versions of libraries# Python version import sys print(Python: {}.format(sys.version)) # scipy import scipy print(scipy: {}.format(scipy.__version__)) # numpy import numpy print(numpy: {}.format(numpy.__version__)…...

C++错题集(持续更新ing)

Day 1 一、选择题 解析: 在数字不会溢出的前提下,对于正数和负数,有: 1)左移n位,相当于操作数乘以2的n次方; 2)右移n位,相当于操作数除以2的n次方。 解析&#xff1a…...

静态IP代理:网络世界的隐秘通道

在数字化时代,网络安全和隐私保护日益受到重视。静态IP代理作为一种网络服务,为用户提供了一个稳定且可预测的网络连接方式,同时保护了用户的在线身份。本文将从五个方面深入探讨静态IP代理的概念、优势、应用场景、技术实现以及选择时的考量…...

信号和槽的其他说明和优缺点

🐌博主主页:🐌​倔强的大蜗牛🐌​ 📚专栏分类:QT❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、信号与槽的断开 二、使用Lambda 表达式定义槽函数 1、局部变量引入方式 [ ] 2、函数参数 &am…...

手工创建 kamailio database tables

有些场景可能kamdbctl create不好使,可能需要手工创建 kamailio database tables,可参考下面的命令序列: USE mysql # 删除之前创建的用户 SELECT user,host FROM user; DROP USER kamailio%; FLUSH PRIVILEGES; # 删除之前创建的数据库 DROP…...

SpringBoot接收参数的19种方式

https://juejin.cn/post/7343243744479625267?share_token6D3AD82C-0404-47A7-949C-CA71F9BC9583...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...