当前位置: 首页 > news >正文

机器学习入门介绍

各位大佬好 ,这里是阿川的博客 , 祝您变得更强

在这里插入图片描述 个人主页:在线OJ的阿川

大佬的支持和鼓励,将是我成长路上最大的动力 在这里插入图片描述

阿川水平有限,如有错误,欢迎大佬指正 在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

目录

  • 三大方向
  • 机器学习产生的原因
  • 机器如何学习
  • 模型评价
  • 应用层
  • 适用条件
  • 学习要弄清楚
    • 数据什么样
    • 研究哪些问题
    • 如何分门别类
    • 常见误区与局限
  • 工具栏
    • 四大必备工具
      • Anaconda
      • [Jupyter notebook](https://jupyter.org/)
      • Numpy(重点)
      • Matplotlib

机器学习

  • 计算机 从数据中学习规律并改善自身进行预测的过程

三大方向

在这里插入图片描述
其中深度学习为重点

机器学习产生的原因

  • 人与计算机理解方式不同
  • 规律系统不够用
  • 逻辑判断专家参与耗时耗力

机器如何学习

在这里插入图片描述
注意:我们期望机器在没有见过的数据集表现良好,所以在训练中会采用28原则

  • 80%的历史数据用来训练
  • 20%的数据用来测试

在这里插入图片描述

模型评价

模型要进行模型评价

在这里插入图片描述

应用层

  • 商品画像
  • 用户画像
  • 商品推荐
  • 搜索算法
  • 以画搜画
  • 商品排序
  • 人脸检测
  • 活体检测
  • 人脸识别

适用条件

  • 问题存在某种模式
    • 一般是人能够解决的,若人解决不了的,作为强人工智能领域
  • 难以人工总结定义
  • 足够样本数据
    • 小数据下会失效

学习要弄清楚

学习机器学习要弄清楚

在这里插入图片描述

数据什么样

  • 常用的公开数据集
  • 典型实例
  • 如何使用数据
  • 高维特征空间
  • 结构化与非结构化数据

研究哪些问题

  • 任务地图

在这里插入图片描述

  • 分类任务(重点)

    • 特征

      • 已知样本特征
      • 判断样本类别
      • 二分类,多分类,多标签分类
    • 二分类

    • 多分类

    • 多标签分类

      • 标签间不互斥
      • 概率和不为1
    • 更多实例

  • 回归任务(重点)

    • 特征

      • 用于预测
    • 线性回归

    • 多项式回归

      • 一个因变量
      • 一个或多个自变量
      • 任何函数都可以用多项式逼近
    • 逻辑回归

      • 实际上是分类
      • 细节很多,求法不同,导致在回归类

不管是分类还是回归,都属于监督学习

  • 类别标记
  • 直接反馈

无监督学习

  • 无标准答案,去探索某种规律或结构

强化学习

  • 研究环境与行动之间的互动,以获取最大化结果

如何分门别类

划分依据

  • 监督学习

    • 训练数据有标记
    • 基础而重要
  • 无监督学习

    • 训练数据未有标记
    • 聚类
    • 降维
      • 主成分分析
        • K均值算法
        • 密度聚类
        • 最大期望算法
      • 核方法
  • 半监督学习

    • 少量标记,大量无标记
  • 强化学习

    • 观测环境
    • 估计状态
    • 执行操作
    • 获得回报或惩罚
  • 批量学习

    • 先训练再使用
    • 需要大量的时间和计算资源
    • 通常都是高线完成
  • 在线学习

    • 循序渐进
    • 边学边用
  • 基于实例的学习

  • 基于模型的学习

常见误区与局限

  • 数据越多越好吗

    • 数据质量是关键
    • 多不意味着准确
    • 传统方法依然有用
  • 模型真的可信吗

    • 可解释性难题
    • 深度学习是个黑盒子
    • 深层学习有具优势
  • 随机和确定性哪个更好

    • 机器学习本质上是统计
    • 确定性依然十分重要
    • 随机与确定性间的平衡
  • 小样本集怎么办

    • 机器学习适合大数据
    • 很多问题是天然小数据
    • 小样本学习是机器学习的挑战
  • 推理而不只是判断

    • 机器学习尚在判断阶段
    • 抽象思维和逻辑思维推理远未实现
    • 数学依旧是汪洋大海
  • 机器学习是机会

    • 深度学习局限性凸显
    • 本质上是几何空间变换
    • 具体问题应具体分析

工具栏

四大必备工具

在这里插入图片描述

Anaconda

在这里插入图片描述

Jupyter notebook

  • 基础使用
    • 基础操作
      • 快捷键
      • markdown
  • 高级使用
    • %%writefile
    • %pycat
    • %run
    • %timeit
    • %time
    • %%timeit
    • %%time
    • %whos
    • %lsmagic
    • %magic

Numpy(重点)

  • 基础知识

    • 性能对比
  • 数组创建

    • 常用属性
      • ndim\shape\size
  • 创建数组

    • np.array()
    • ones/ones_alike
    • zeros/zeros_like
    • full/full_like 指定数值
    • empty/empty_like 实数组
    • arange/linspace 等量数组
    • random/rand/randint/randn/nomal/uniform/seed 随机数组
    • reshape 改变形状
    • help/? 查看文档
  • 基础索引

  • 数据合并与拆分

    • 合并
      • concatnade/vstack/hstack
    • 拆分
      • split/vsplit/hsplit
  • 矩阵运算

    • 一元运算
      • abs/sqrt/square/exp/log/ceil/floot/round/sincostan
    • 二元运算
      • dot/加速乘除/取余/幂运算
    • 矩阵运算
      • 加速乘除/dot/转查/逆矩阵/行列式
  • 统计运算

    • min/max
    • sum/mean/median/std/var
    • ptp/percentile/cumsum/diff/prod
  • arg运算

    • argmin/argmax/argsort/argpartition
  • 补齐索引和布尔索引

Matplotlib

  • 数据可视化基础
    • 拆线
    • 散点
    • 绘制设置

好的,到此为止啦,祝您变得更强

在这里插入图片描述

道阻且长 行则将至

个人主页:在线OJ的阿川大佬的支持和鼓励,将是我成长路上最大的动力 在这里插入图片描述

相关文章:

机器学习入门介绍

各位大佬好 ,这里是阿川的博客 , 祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 目录 三大方向机器学习产生的原因机器如何学习…...

一文说通用户故事点数是什么?

一文说通用户故事点数是什么? 第26期:一文说通用户故事点数是什么? 用户故事点数是一种采用相对估算法进行估算的一种工具,一般采用斐波那契数列表征用户故事里说的大小,采用0 1 2 3 5 8 13这样的一些数字来表征用户…...

GAME101-Lecture07学习

前言 今天主要讲shading(着色)。在讲着色前,要先讲图形中三角形出现遮挡问题的方法(深度缓存或缓冲)。 先采样再模糊错误:对信号的频谱进行翻译(在这期间会有频谱的混叠)&#xff…...

【一步一步了解Java系列】:了解Java与C语言的运算符的“大同小异”

看到这句话的时候证明:此刻你我都在努力~ 加油陌生人~ 个人主页: Gu Gu Study ​​ 专栏:一步一步了解Java 喜欢的一句话: 常常会回顾努力的自己,所以要为自己的努…...

ICSE docker related research

ICSE 2024 Empirical Study of the Docker Smells Impact on the Image Size Docker 气味对镜像大小影响的实证研究 Docker 是一种广泛采用的打包和部署应用程序的工具,它利用 Dockerfile 来构建镜像。然而,创建最佳的 Dockerfile 可能具有挑战性&…...

【C++】学习笔记——多态_1

文章目录 十二、继承8. 继承和组合 十三、多态1. 多态的概念2. 多态的定义和实现虚函数重写的两个特殊情况override 和 final 3. 多态的原理1. 虚函数表 未完待续 十二、继承 8. 继承和组合 我们已经知道了什么是继承,那组合又是什么?下面这种情况就是…...

C++map容器关联式容器

Cmap 1. 关联式容器 vector、list、deque、forward_list(C11)等STL容器,其底层为线性序列的数据结构,里面存储的是元素本身,这样的容器被统称为序列式容器。而map、set是一种关联式容器,关联式容器也是用来存储数据的&#xff0…...

TS-抽象类和静态成员

目录 1,抽象类1,为什么需要抽象类2,抽象成员3,设计模式-模板模式 2,静态成员1,什么是静态成员2,设计模式-单例模式 1,抽象类 1,为什么需要抽象类 有时,某个…...

SharePoint 使用renderListDataAsStream方法查询list超过5000时的数据

问题: 当SharePoint List里的数据超过5000时,如果使用常用的rest api去获取数据,例如 await this.sp.web.lists.getByTitle(Document Library).rootFolder.files.select(*, listItemAllFields).expand(listItemAllFields).filter(listItemA…...

2024042001-计算机网络 - 物理层

计算机网络 - 物理层 计算机网络 - 物理层 通信方式带通调制 通信方式 根据信息在传输线上的传送方向,分为以下三种通信方式: 单工通信:单向传输半双工通信:双向交替传输全双工通信:双向同时传输 带通调制 模拟信号…...

通过java将数据导出为PDF,包扣合并单元格操作

最近项目中需要将查询出来的表格数据以PDF形式导出&#xff0c;并且表格的形式包含横向行与纵向列的单元格合并操作&#xff0c;导出的最终效果如图所示&#xff1a; 首先引入操作依赖 <!--导出pdf所需包--><dependency><groupId>com.itextpdf</groupId&…...

Java内存模式以及volatile关键字的使用

1.Java内存模型 &#xff08;1&#xff09;Java 内存模型&#xff08;Java Memory Model&#xff0c;简称 JMM&#xff09;&#xff0c;它是一个抽象的概念&#xff0c;JMM是和多线程相关的&#xff0c;它是一组规范&#xff0c;描述了一组规则&#xff0c;定义了多线程对共享…...

每日5题Day3 - LeetCode 11 - 15

每一步向前都是向自己的梦想更近一步&#xff0c;坚持不懈&#xff0c;勇往直前&#xff01; 第一题&#xff1a;11. 盛最多水的容器 - 力扣&#xff08;LeetCode&#xff09; class Solution {public int maxArea(int[] height) {//这道题比较特殊&#xff0c;因为两边是任意…...

路由器、交换机和网卡

大家使用VMware安装镜像之后&#xff0c;是不是都会考虑虚拟机的镜像系统怎么连上网的&#xff0c;它的连接方式是什么&#xff0c;它ip是什么&#xff1f; 路由器、交换机和网卡 1.路由器 一般有几个功能&#xff0c;第一个是网关、第二个是扩展有线网络端口、第三个是WiFi功…...

腾讯开源混元DiT文生图模型,消费级单卡可推理

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 总结链接…...

shell脚本基础(if/else结构)

命令是双向选择语句&#xff0c;当用户执行脚本时如果不满足if后的表达式也会执行else后的命令&#xff0c;所以有很好的交互性。其结构为&#xff1a; if expression1 then command … command else command … command fi vim ifelse_exam.sh #ifelse_exam.sh #!/bin/bashec…...

万字长文破解 AI 图片生成算法-Stable diffusion (第一篇)

想象一下&#xff1a;你闭上眼睛&#xff0c;脑海中构思一个场景&#xff0c;用简短的语言描述出来&#xff0c;然后“啪”的一声&#xff0c;一张栩栩如生的图片就出现在你眼前。这不再是科幻小说里才有的情节&#xff0c;而是Stable Diffusion——一种前沿的AI图片生成算法—…...

Linux---编辑器vim的认识与简单配置

前言 我们在自己的电脑上所用的编译软件&#xff0c;就拿vs2022来说&#xff0c;我们可以在上面写C/C语言、python、甚至java也可以在上面进行编译&#xff0c;这种既可以用来编辑、运行编译&#xff0c;又可以支持很多种语言的编译器是一种集成式开发环境&#xff0c;集众多于…...

lucene中Collector类、CollectorManager类区分和用法

我的lucene版本是9.10.0&#xff0c;请说明Collector类、CollectorManager类区分和用法&#xff0c;尽量详细点 在 Lucene 9.10.0 中&#xff0c;Collector 类和 CollectorManager 类都是用于搜索结果的收集和处理 Collector 类 Collector 类是一个接口&#xff0c;用于收集…...

Android之给Button上添加按压效果

一、配置stateListAnimator参数实现按压效果 1、按钮控件 <Buttonandroid:id"id/mBtnLogin"android:layout_width"match_parent"android:layout_height"48dp"android:background"drawable/shape_jfrb_login_button"android:state…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

FTXUI::Dom 模块

DOM 模块定义了分层的 FTXUI::Element 树&#xff0c;可用于构建复杂的终端界面&#xff0c;支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...