当前位置: 首页 > news >正文

python数据处理与分析入门-pandas使用(4)

往期文章:

  1. pandas使用1
  2. pandas使用2
  3. pandas使用3

pandas使用技巧

创建一个DF对象

# 首先创建一个时间序列
dates = pd.date_range('20180101', periods=6)
print(dates)# 创建DataFrame对象,指定index和columns标签
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print(df)

布尔型索引使用

# 用一列的值来选择数据
print(df.A > 0)
print("-----------------------------------------------")
# 使用.isin()函数过滤数据
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
# 提取df2中'E'值属于['two', 'four']的行
print(df2[df2['E'].isin(['two','four'])])
# 输出
2018-01-01     True
2018-01-02     True
2018-01-03    False
2018-01-04    False
2018-01-05    False
2018-01-06     True
Freq: D, Name: A, dtype: bool
-----------------------------------------------A         B         C         D     E
2018-01-03 -0.737122 -1.018953  1.367684  0.038003   two
2018-01-05 -1.120744 -0.270765 -0.182049 -1.142167  four
# 为DataFrame创建一个新的列,其值为时间顺序(与df相同)的索引值
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180101', periods=6))
print(s1)df['F'] = s1# 按标签赋值
df.at[dates[0],'A'] = 0# 按索引赋值
df.iat[0,1] = 0# 用Numpy数组赋值
df.loc[:,'D'] = np.array([5] * len(df))
print("-----------------------------------------------")
# 最终结果
print(df)
# 输出
2018-01-01    1
2018-01-02    2
2018-01-03    3
2018-01-04    4
2018-01-05    5
2018-01-06    6
Freq: D, dtype: int64
-----------------------------------------------A         B         C  D  F
2018-01-01  0.000000  0.000000 -1.688875  5  1
2018-01-02  0.405921  0.596388  0.742552  5  2
2018-01-03 -0.737122 -1.018953  1.367684  5  3
2018-01-04 -0.356770  1.083033  0.876066  5  4
2018-01-05 -1.120744 -0.270765 -0.182049  5  5
2018-01-06  1.279730 -0.662744  0.443358  5  6

缺失数据

Pandas默认使用np.nan来代表缺失数据。Reindexing允许用户对某一轴上的索引改/增/删,并返回数据的副本

# 创建DataFrame对象df1,以dates[0:4]为索引,
# 在df的基础上再加一个新的列'E'(初始均为NaN)
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
print(df1)
print("-----------------------------------------------")
# 将'E'列的前两个行设为1
df1.loc[dates[0]:dates[1],'E'] = 1
print(df1)
# 输出A         B         C  D  F   E
2018-01-01  0.000000  0.000000 -1.688875  5  1 NaN
2018-01-02  0.405921  0.596388  0.742552  5  2 NaN
2018-01-03 -0.737122 -1.018953  1.367684  5  3 NaN
2018-01-04 -0.356770  1.083033  0.876066  5  4 NaN
-----------------------------------------------A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
2018-01-03 -0.737122 -1.018953  1.367684  5  3  NaN
2018-01-04 -0.356770  1.083033  0.876066  5  4  NaN
# 处理缺失数据
# 剔除df1中含NaN的行(只要任一一列为NaN就算)
df2 = df1.dropna(how='any')
print(df2)
print("--------------------------------------")
# 用5填充df1里的缺失值
df2 = df1.fillna(value=5)
print(df2)
print("--------------------------------------")
# 判断df2中的值是否为缺失数据,返回True/False
print(pd.isnull(df2))
# 输出A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
--------------------------------------A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
2018-01-03 -0.737122 -1.018953  1.367684  5  3  5.0
2018-01-04 -0.356770  1.083033  0.876066  5  4  5.0
--------------------------------------A      B      C      D      F      E
2018-01-01  False  False  False  False  False  False
2018-01-02  False  False  False  False  False  False
2018-01-03  False  False  False  False  False  False
2018-01-04  False  False  False  False  False  False
此类操作默认排除缺失数据
# 重新创建一份数据
dates = pd.date_range('20180101', periods=6)
df = pd.DataFrame(np.ones((6,4)), index=dates, columns=list('ABCD'))
s = pd.Series([2,2,2,2,2,2], index=dates)
df['E'] = s
df.head()
# 求平均值
print(df.mean())
print("------")# 一行求平均值
print(df.mean(1))
print("------")# 创建Series对象s,以dates为索引并平移2个位置
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
print(s)
print("------")# 从df中逐列减去s(若有NaN则得NaN)
print(df.sub(s, axis='index'))# 逐行累加
print(df.apply(np.cumsum))
print("------")# 每列的最大值减最小值
print(df.apply(lambda x: x.max() - x.min()))# 字符
# Series对象的str属性具有一系列字符处理方法,可以很轻松地操作数组的每个元素。
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
print(s.str.lower())

更多内容请查看我的gittee仓库 : Python基础练习

相关文章:

python数据处理与分析入门-pandas使用(4)

往期文章: pandas使用1pandas使用2pandas使用3 pandas使用技巧 创建一个DF对象 # 首先创建一个时间序列 dates pd.date_range(20180101, periods6) print(dates)# 创建DataFrame对象,指定index和columns标签 df pd.DataFrame(np.random.randn(6,4), …...

操作系统-单片机进程状态问题(三态模型问题)

例题:在单处理机计算机系统中有1台打印机、1台扫描仪,系统采用先来先服务调度算法。假设系统中有进程P1、P2、P3、P4,其中P1为运行状态,P2为就绪状态,P3等待打印机,P4等待扫描仪。此时,若P1释放…...

Linux文件:重定向底层实现原理(输入重定向、输出重定向、追加重定向)

Linux文件:重定向底层实现原理(输入重定向、输出重定向、追加重定向) 前言一、文件描述符fd的分配规则二、输出重定向(>)三、输出重定向底层实现原理四、追加重定向(>>)五、输入重定向…...

波搜索算法(WSA)-2024年SCI新算法-公式原理详解与性能测评 Matlab代码免费获取

​ 声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 原理简介 一、初始化阶段 二、全…...

洛谷P1364 医院设置

P1364 医院设置 题目描述 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定&#xff0c…...

哈希表的理解和实现

目录 1. 哈希的概念 (是什么) 2. 实现哈希的两种方式 (哈希函数) 2.1. 直接定址法 2.2. 除留余数法 2.2.1. 哈希冲突 3. 补充知识 3.1. 负载因子 3.2. 线性探测和二次探测 4. 闭散列实现哈希表 (开放定址法) 4.1. 开放定址法的实现框架 4.2. Xq::hash_table::insert…...

分治算法(Divide-and-Conquer Algorithm)

分治算法(Divide-and-Conquer Algorithm)是一种重要的计算机科学和数学领域的通用问题解决策略。其基本思想是将一个复杂的大规模问题分割成若干个规模较小、结构与原问题相似但相对简单的子问题来处理。这些子问题相互独立,分别求解后再通过…...

Java项目:基于ssm框架实现的实验室耗材管理系统(B/S架构+源码+数据库+毕业论文+答辩PPT)

一、项目简介 本项目是一套基于ssm框架实现的实验室耗材管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 二、技术实现 jdk版本:1.8 …...

如何通过专业的二手机店erp优化手机商家运营!

在数字化浪潮席卷全球的大背景下,手机行业作为科技发展的前沿阵地,正经历着前所未有的变革。对于众多手机商家而言,如何在这场变革中抢占先机,实现数字化转型,成为了摆在他们面前的一大难题。幸运的是,途渡…...

CentOS常见的命令及其高质量应用

CentOS是一个流行的、基于Red Hat Enterprise Linux(RHEL)的开源服务器操作系统。由于其稳定性和强大的性能,CentOS被广泛应用于各种服务器环境中。为了有效地管理和维护CentOS系统,熟悉并掌握其常见命令是非常重要的。本文将介绍…...

nodeJs用ffmpeg直播推流到rtmp服务器上

总结 最近在写直播项目 目前比较重要的点就是推拉流 自己也去了解了一下 ffmpeg FFmpeg 是一个开源项目,它提供了一个跨平台的命令行工具,以及一系列用于处理音频和视频数据的库。FFmpeg 能够执行多种任务,包括解封装、转封装、视频和音频…...

Django信号与扩展:深入理解与实践

title: Django信号与扩展:深入理解与实践 date: 2024/5/15 22:40:52 updated: 2024/5/15 22:40:52 categories: 后端开发 tags: Django信号松耦合观察者扩展安全性能 第一部分:Django信号基础 Django信号概述 一. Django信号的定义与作用 Django信…...

使用Docker创建verdaccio私服

verdaccio官网 1.Docker安装 这边以Ubuntu安装为例Ubuntu 安装Docker​,具体安装方式请根据自己电脑自行搜索。 2.下载verdaccio docker pull verdaccio/verdaccio3.运行verdaccio 运行容器: docker run -it -d --name verdaccio -p 4873:4873 ver…...

Spring 使用 Groovy 实现动态server

本人在项目中遇到这么个需求,有一个模块的server方法需要频繁修改 经阅读可以使用 Groovy 使用java脚本来时pom坐标 <dependency><groupId>org.codehaus.groovy</groupId><artifactId>groovy</artifactId><version>3.0.9</version>…...

oracle不得不知道的sql

一、oracle 查询语句 1.translate select translate(abc你好cdefgdc,abcdefg,1234567)from dual; select translate(abc你好cdefgdc,abcdefg,)from dual;--如果替换字符整个为空字符 &#xff0c;则直接返回null select translate(abc你好cdefgdc,abcdefg,122)from dual; sel…...

算法-卡尔曼滤波之卡尔曼滤波的第二个方程:预测方程(状态外推方程)

在上一节中&#xff0c;使用了静态模型&#xff0c;我们推导出了卡尔曼滤波的状态更新方程&#xff0c;但是在实际情况下&#xff0c;系统都是动态&#xff0c;预测阶段&#xff0c;前后时刻的状态是改变的&#xff0c;此时我们引入预测方程&#xff0c;也叫状态外推方程&#…...

刘邦的创业团队是沛县人,朱元璋的则是凤阳;要创业,一个县人才就够了

当人们回顾刘邦和朱元璋的创业经历时&#xff0c;总是会感慨他们起于微末&#xff0c;都创下了偌大王朝&#xff0c;成就无上荣誉。 尤其是我们查阅史书时&#xff0c;发现这二人的崛起班底都是各自的家乡人&#xff0c;例如刘邦的班底就是沛县人&#xff0c;朱元璋的班底是凤…...

【Unity之FairyGUI】你了解FGUI吗,跨平台多功能高效UI插件

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;就业…...

基于51单片机的自动浇花器电路

一、系统概述 自动浇水灌溉系统设计方案&#xff0c;以AT89C51单片机为控制核心&#xff0c;采用模块化的设计方法。 组成部分为&#xff1a;5V供电模块、土壤湿度传感器模块、ADC0832模数转换模块、水泵控制模块、按键输入模块、LCD显示模块和声光报警模块&#xff0c;结构如…...

2024中国(重庆)商旅文化川渝美食暨消费品博览会8月举办

2024中国(重庆)商旅文化川渝美食暨消费品博览会8月举办 邀请函 主办单位&#xff1a; 中国航空学会 重庆市南岸区人民政府 招商执行单位&#xff1a; 重庆港华展览有限公司 展会背景&#xff1a; 2024中国航空科普大会暨第八届全国青少年无人机大赛在重庆举办&#xff…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...