当前位置: 首页 > news >正文

python数据处理与分析入门-pandas使用(4)

往期文章:

  1. pandas使用1
  2. pandas使用2
  3. pandas使用3

pandas使用技巧

创建一个DF对象

# 首先创建一个时间序列
dates = pd.date_range('20180101', periods=6)
print(dates)# 创建DataFrame对象,指定index和columns标签
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print(df)

布尔型索引使用

# 用一列的值来选择数据
print(df.A > 0)
print("-----------------------------------------------")
# 使用.isin()函数过滤数据
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
# 提取df2中'E'值属于['two', 'four']的行
print(df2[df2['E'].isin(['two','four'])])
# 输出
2018-01-01     True
2018-01-02     True
2018-01-03    False
2018-01-04    False
2018-01-05    False
2018-01-06     True
Freq: D, Name: A, dtype: bool
-----------------------------------------------A         B         C         D     E
2018-01-03 -0.737122 -1.018953  1.367684  0.038003   two
2018-01-05 -1.120744 -0.270765 -0.182049 -1.142167  four
# 为DataFrame创建一个新的列,其值为时间顺序(与df相同)的索引值
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180101', periods=6))
print(s1)df['F'] = s1# 按标签赋值
df.at[dates[0],'A'] = 0# 按索引赋值
df.iat[0,1] = 0# 用Numpy数组赋值
df.loc[:,'D'] = np.array([5] * len(df))
print("-----------------------------------------------")
# 最终结果
print(df)
# 输出
2018-01-01    1
2018-01-02    2
2018-01-03    3
2018-01-04    4
2018-01-05    5
2018-01-06    6
Freq: D, dtype: int64
-----------------------------------------------A         B         C  D  F
2018-01-01  0.000000  0.000000 -1.688875  5  1
2018-01-02  0.405921  0.596388  0.742552  5  2
2018-01-03 -0.737122 -1.018953  1.367684  5  3
2018-01-04 -0.356770  1.083033  0.876066  5  4
2018-01-05 -1.120744 -0.270765 -0.182049  5  5
2018-01-06  1.279730 -0.662744  0.443358  5  6

缺失数据

Pandas默认使用np.nan来代表缺失数据。Reindexing允许用户对某一轴上的索引改/增/删,并返回数据的副本

# 创建DataFrame对象df1,以dates[0:4]为索引,
# 在df的基础上再加一个新的列'E'(初始均为NaN)
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
print(df1)
print("-----------------------------------------------")
# 将'E'列的前两个行设为1
df1.loc[dates[0]:dates[1],'E'] = 1
print(df1)
# 输出A         B         C  D  F   E
2018-01-01  0.000000  0.000000 -1.688875  5  1 NaN
2018-01-02  0.405921  0.596388  0.742552  5  2 NaN
2018-01-03 -0.737122 -1.018953  1.367684  5  3 NaN
2018-01-04 -0.356770  1.083033  0.876066  5  4 NaN
-----------------------------------------------A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
2018-01-03 -0.737122 -1.018953  1.367684  5  3  NaN
2018-01-04 -0.356770  1.083033  0.876066  5  4  NaN
# 处理缺失数据
# 剔除df1中含NaN的行(只要任一一列为NaN就算)
df2 = df1.dropna(how='any')
print(df2)
print("--------------------------------------")
# 用5填充df1里的缺失值
df2 = df1.fillna(value=5)
print(df2)
print("--------------------------------------")
# 判断df2中的值是否为缺失数据,返回True/False
print(pd.isnull(df2))
# 输出A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
--------------------------------------A         B         C  D  F    E
2018-01-01  0.000000  0.000000 -1.688875  5  1  1.0
2018-01-02  0.405921  0.596388  0.742552  5  2  1.0
2018-01-03 -0.737122 -1.018953  1.367684  5  3  5.0
2018-01-04 -0.356770  1.083033  0.876066  5  4  5.0
--------------------------------------A      B      C      D      F      E
2018-01-01  False  False  False  False  False  False
2018-01-02  False  False  False  False  False  False
2018-01-03  False  False  False  False  False  False
2018-01-04  False  False  False  False  False  False
此类操作默认排除缺失数据
# 重新创建一份数据
dates = pd.date_range('20180101', periods=6)
df = pd.DataFrame(np.ones((6,4)), index=dates, columns=list('ABCD'))
s = pd.Series([2,2,2,2,2,2], index=dates)
df['E'] = s
df.head()
# 求平均值
print(df.mean())
print("------")# 一行求平均值
print(df.mean(1))
print("------")# 创建Series对象s,以dates为索引并平移2个位置
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
print(s)
print("------")# 从df中逐列减去s(若有NaN则得NaN)
print(df.sub(s, axis='index'))# 逐行累加
print(df.apply(np.cumsum))
print("------")# 每列的最大值减最小值
print(df.apply(lambda x: x.max() - x.min()))# 字符
# Series对象的str属性具有一系列字符处理方法,可以很轻松地操作数组的每个元素。
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
print(s.str.lower())

更多内容请查看我的gittee仓库 : Python基础练习

相关文章:

python数据处理与分析入门-pandas使用(4)

往期文章: pandas使用1pandas使用2pandas使用3 pandas使用技巧 创建一个DF对象 # 首先创建一个时间序列 dates pd.date_range(20180101, periods6) print(dates)# 创建DataFrame对象,指定index和columns标签 df pd.DataFrame(np.random.randn(6,4), …...

操作系统-单片机进程状态问题(三态模型问题)

例题:在单处理机计算机系统中有1台打印机、1台扫描仪,系统采用先来先服务调度算法。假设系统中有进程P1、P2、P3、P4,其中P1为运行状态,P2为就绪状态,P3等待打印机,P4等待扫描仪。此时,若P1释放…...

Linux文件:重定向底层实现原理(输入重定向、输出重定向、追加重定向)

Linux文件:重定向底层实现原理(输入重定向、输出重定向、追加重定向) 前言一、文件描述符fd的分配规则二、输出重定向(>)三、输出重定向底层实现原理四、追加重定向(>>)五、输入重定向…...

波搜索算法(WSA)-2024年SCI新算法-公式原理详解与性能测评 Matlab代码免费获取

​ 声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 原理简介 一、初始化阶段 二、全…...

洛谷P1364 医院设置

P1364 医院设置 题目描述 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定&#xff0c…...

哈希表的理解和实现

目录 1. 哈希的概念 (是什么) 2. 实现哈希的两种方式 (哈希函数) 2.1. 直接定址法 2.2. 除留余数法 2.2.1. 哈希冲突 3. 补充知识 3.1. 负载因子 3.2. 线性探测和二次探测 4. 闭散列实现哈希表 (开放定址法) 4.1. 开放定址法的实现框架 4.2. Xq::hash_table::insert…...

分治算法(Divide-and-Conquer Algorithm)

分治算法(Divide-and-Conquer Algorithm)是一种重要的计算机科学和数学领域的通用问题解决策略。其基本思想是将一个复杂的大规模问题分割成若干个规模较小、结构与原问题相似但相对简单的子问题来处理。这些子问题相互独立,分别求解后再通过…...

Java项目:基于ssm框架实现的实验室耗材管理系统(B/S架构+源码+数据库+毕业论文+答辩PPT)

一、项目简介 本项目是一套基于ssm框架实现的实验室耗材管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 二、技术实现 jdk版本:1.8 …...

如何通过专业的二手机店erp优化手机商家运营!

在数字化浪潮席卷全球的大背景下,手机行业作为科技发展的前沿阵地,正经历着前所未有的变革。对于众多手机商家而言,如何在这场变革中抢占先机,实现数字化转型,成为了摆在他们面前的一大难题。幸运的是,途渡…...

CentOS常见的命令及其高质量应用

CentOS是一个流行的、基于Red Hat Enterprise Linux(RHEL)的开源服务器操作系统。由于其稳定性和强大的性能,CentOS被广泛应用于各种服务器环境中。为了有效地管理和维护CentOS系统,熟悉并掌握其常见命令是非常重要的。本文将介绍…...

nodeJs用ffmpeg直播推流到rtmp服务器上

总结 最近在写直播项目 目前比较重要的点就是推拉流 自己也去了解了一下 ffmpeg FFmpeg 是一个开源项目,它提供了一个跨平台的命令行工具,以及一系列用于处理音频和视频数据的库。FFmpeg 能够执行多种任务,包括解封装、转封装、视频和音频…...

Django信号与扩展:深入理解与实践

title: Django信号与扩展:深入理解与实践 date: 2024/5/15 22:40:52 updated: 2024/5/15 22:40:52 categories: 后端开发 tags: Django信号松耦合观察者扩展安全性能 第一部分:Django信号基础 Django信号概述 一. Django信号的定义与作用 Django信…...

使用Docker创建verdaccio私服

verdaccio官网 1.Docker安装 这边以Ubuntu安装为例Ubuntu 安装Docker​,具体安装方式请根据自己电脑自行搜索。 2.下载verdaccio docker pull verdaccio/verdaccio3.运行verdaccio 运行容器: docker run -it -d --name verdaccio -p 4873:4873 ver…...

Spring 使用 Groovy 实现动态server

本人在项目中遇到这么个需求,有一个模块的server方法需要频繁修改 经阅读可以使用 Groovy 使用java脚本来时pom坐标 <dependency><groupId>org.codehaus.groovy</groupId><artifactId>groovy</artifactId><version>3.0.9</version>…...

oracle不得不知道的sql

一、oracle 查询语句 1.translate select translate(abc你好cdefgdc,abcdefg,1234567)from dual; select translate(abc你好cdefgdc,abcdefg,)from dual;--如果替换字符整个为空字符 &#xff0c;则直接返回null select translate(abc你好cdefgdc,abcdefg,122)from dual; sel…...

算法-卡尔曼滤波之卡尔曼滤波的第二个方程:预测方程(状态外推方程)

在上一节中&#xff0c;使用了静态模型&#xff0c;我们推导出了卡尔曼滤波的状态更新方程&#xff0c;但是在实际情况下&#xff0c;系统都是动态&#xff0c;预测阶段&#xff0c;前后时刻的状态是改变的&#xff0c;此时我们引入预测方程&#xff0c;也叫状态外推方程&#…...

刘邦的创业团队是沛县人,朱元璋的则是凤阳;要创业,一个县人才就够了

当人们回顾刘邦和朱元璋的创业经历时&#xff0c;总是会感慨他们起于微末&#xff0c;都创下了偌大王朝&#xff0c;成就无上荣誉。 尤其是我们查阅史书时&#xff0c;发现这二人的崛起班底都是各自的家乡人&#xff0c;例如刘邦的班底就是沛县人&#xff0c;朱元璋的班底是凤…...

【Unity之FairyGUI】你了解FGUI吗,跨平台多功能高效UI插件

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;就业…...

基于51单片机的自动浇花器电路

一、系统概述 自动浇水灌溉系统设计方案&#xff0c;以AT89C51单片机为控制核心&#xff0c;采用模块化的设计方法。 组成部分为&#xff1a;5V供电模块、土壤湿度传感器模块、ADC0832模数转换模块、水泵控制模块、按键输入模块、LCD显示模块和声光报警模块&#xff0c;结构如…...

2024中国(重庆)商旅文化川渝美食暨消费品博览会8月举办

2024中国(重庆)商旅文化川渝美食暨消费品博览会8月举办 邀请函 主办单位&#xff1a; 中国航空学会 重庆市南岸区人民政府 招商执行单位&#xff1a; 重庆港华展览有限公司 展会背景&#xff1a; 2024中国航空科普大会暨第八届全国青少年无人机大赛在重庆举办&#xff…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...