当前位置: 首页 > news >正文

【线性回归】梯度下降

文章目录

    • @[toc]
      • 数据
        • 数据集
        • 实际值
        • 估计值
      • 梯度下降算法
        • 估计误差
        • 代价函数
        • 学习率
        • 参数更新
      • `Python`实现
        • 导包
        • 数据预处理
        • 迭代过程
        • 结果可视化
        • 完整代码
      • 结果可视化
        • 线性拟合结果
        • 代价变化

数据

数据集

( x ( i ) , y ( i ) ) , i = 1 , 2 , ⋯ , m \left(x^{(i)} , y^{(i)}\right) , i = 1 , 2 , \cdots , m (x(i),y(i)),i=1,2,,m

实际值

y ( i ) y^{(i)} y(i)

估计值

h θ ( x ( i ) ) = θ 0 + θ 1 x ( i ) h_{\theta}\left(x^{(i)}\right) = \theta_{0} + \theta_{1} x^{(i)} hθ(x(i))=θ0+θ1x(i)


梯度下降算法

估计误差

h θ ( x ( i ) ) − y ( i ) h_{\theta}\left(x^{(i)}\right) - y^{(i)} hθ(x(i))y(i)

代价函数

J ( θ ) = J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 J(\theta) = J(\theta_{0} , \theta_{1}) = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right)^{2}} = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)}\right)^{2}} J(θ)=J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2=2m1i=1m(θ0+θ1x(i)y(i))2

学习率
  • α \alpha α是学习率,一个大于 0 0 0的很小的经验值,决定代价函数下降的程度
参数更新

Δ θ j = ∂ ∂ θ j J ( θ 0 , θ 1 ) \Delta{\theta_{j}} = \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) Δθj=θjJ(θ0,θ1)

θ j : = θ j − α Δ θ j = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_{j} := \theta_{j} - \alpha \Delta{\theta_{j}} = \theta_{j} - \alpha \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) θj:=θjαΔθj=θjαθjJ(θ0,θ1)

$$
\left[
\begin{matrix}
\theta_{0} \
\theta_{1}
\end{matrix}
\right] :=

\left[
\begin{matrix}
\theta_{0} \
\theta_{1}
\end{matrix}
\right] -
\alpha

\left[
\begin{matrix}
\cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \
\cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}}
\end{matrix}
\right]
$$

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x ( i ) ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] e ( i ) = h θ ( x ( i ) ) − y ( i ) \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right)} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right) x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] \kern{2em} e^{(i)} = h_{\theta}\left(x^{(i)}\right) - y^{(i)} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1m(hθ(x(i))y(i))m1i=1m(hθ(x(i))y(i))x(i) = m1i=1me(i)m1i=1me(i)x(i) e(i)=hθ(x(i))y(i)

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] = [ 1 m ( e ( 1 ) + e ( 2 ) + ⋯ + e ( m ) ) 1 m ( e ( 1 ) x ( 1 ) + e ( 2 ) x ( 2 ) + ⋯ + e ( m ) x ( m ) ) ] = 1 m [ 1 1 ⋯ 1 x ( 1 ) x ( 2 ) ⋯ x ( m ) ] [ e ( 1 ) e ( 2 ) ⋮ e ( m ) ] = 1 m X T e = 1 m X T ( X θ − y ) \begin{aligned} \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] &= \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \left(e^{(1)} + e^{(2)} + \cdots + e^{(m)}\right) \\ \cfrac{1}{m} \left(e^{(1)} x^{(1)} + e^{(2)} x^{(2)} + \cdots + e^{(m)} x^{(m)}\right) \end{matrix} \right] \\ &= \cfrac{1}{m} \left[ \begin{matrix} 1 & 1 & \cdots & 1 \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{matrix} \right] \left[ \begin{matrix} e^{(1)} \\ e^{(2)} \\ \vdots \\ e^{(m)} \end{matrix} \right] = \cfrac{1}{m} X^{T} e = \cfrac{1}{m} X^{T} (X \theta - y) \end{aligned} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1me(i)m1i=1me(i)x(i) = m1(e(1)+e(2)++e(m))m1(e(1)x(1)+e(2)x(2)++e(m)x(m)) =m1[1x(1)1x(2)1x(m)] e(1)e(2)e(m) =m1XTe=m1XT(y)

  • 由上述推导得

Δ θ = 1 m X T e \Delta{\theta} = \cfrac{1}{m} X^{T} e Δθ=m1XTe

θ : = θ − α Δ θ = θ − α 1 m X T e \theta := \theta - \alpha \Delta{\theta} = \theta - \alpha \cfrac{1}{m} X^{T} e θ:=θαΔθ=θαm1XTe


Python实现

导包
import numpy as np
import matplotlib.pyplot as plt
数据预处理
x = np.array([4, 3, 3, 4, 2, 2, 0, 1, 2, 5, 1, 2, 5, 1, 3])
y = np.array([8, 6, 6, 7, 4, 4, 2, 4, 5, 9, 3, 4, 8, 3, 6])m = len(x)x = np.c_[np.ones((m, 1)), x]
y = y.reshape(m, 1)
迭代过程
alpha = 0.01  # 学习率
iter_cnt = 1000  # 迭代次数
cost = np.zeros(iter_cnt)  # 代价数据
theta = np.zeros((2, 1))for i in range(iter_cnt):h = x.dot(theta)  # 估计值error = h - y  # 误差值cost[i] = 1 / (2 * m) * error.T.dot(error)  # 代价值# cost[i] = 1 / (2 * m) * np.sum(np.square(error))  # 代价值# 更新参数delta_theta = 1 / m * x.T.dot(error)theta -= alpha * delta_theta
结果可视化
# 线性拟合结果
plt.scatter(x[:, 1], y, c='blue')
plt.plot(x[:, 1], h, 'r-')
plt.savefig('../pic/fit.png')
plt.show()# 代价结果
plt.plot(cost)
plt.savefig('../pic/cost.png')
plt.show()
完整代码
import numpy as np
import matplotlib.pyplot as pltx = np.array([4, 3, 3, 4, 2, 2, 0, 1, 2, 5, 1, 2, 5, 1, 3])
y = np.array([8, 6, 6, 7, 4, 4, 2, 4, 5, 9, 3, 4, 8, 3, 6])m = len(x)x = np.c_[np.ones((m, 1)), x]
y = y.reshape(m, 1)alpha = 0.01  # 学习率
iter_cnt = 1000  # 迭代次数
cost = np.zeros(iter_cnt)  # 代价数据
theta = np.zeros((2, 1))for i in range(iter_cnt):h = x.dot(theta)  # 估计值error = h - y  # 误差值cost[i] = 1 / (2 * m) * error.T.dot(error)  # 代价值# cost[i] = 1 / (2 * m) * np.sum(np.square(error))  # 代价值# 更新参数delta_theta = 1 / m * x.T.dot(error)theta -= alpha * delta_theta# 线性拟合结果
plt.scatter(x[:, 1], y, c='blue')
plt.plot(x[:, 1], h, 'r-')
plt.savefig('../pic/fit.png')
plt.show()# 代价结果
plt.plot(cost)
plt.savefig('../pic/cost.png')
plt.show()

结果可视化

线性拟合结果

1

代价变化

2


相关文章:

【线性回归】梯度下降

文章目录 [toc]数据数据集实际值估计值 梯度下降算法估计误差代价函数学习率参数更新 Python实现导包数据预处理迭代过程结果可视化完整代码 结果可视化线性拟合结果代价变化 数据 数据集 ( x ( i ) , y ( i ) ) , i 1 , 2 , ⋯ , m \left(x^{(i)} , y^{(i)}\right) , i 1 ,…...

GMSL图像采集卡,适用于无人车、自动驾驶、自主机器、数据采集等场景,支持定制

基于各种 系列二代 G MS L 图像采集卡(以下简称 二代图像采集卡)是一款自主研发的一款基于 F P G A 的高速图像产品,二代图像采集卡相比一代卡,由于采用PCIe G en 3 技术,速度和带宽都相应的有了成 倍的提高。该图像…...

docker不删除容器更改其挂载目录

场景:docker搭建的jenkins通常需要配置很多开发环境,当要更换挂载目录,每次都需要删除容器重新运行,不在挂载目录的环境通常不会保留。 先给一个参考博客docker不删除容器,修改容器挂载或其他_jenkins 修改容器挂载do…...

K8s Service 背后是怎么工作的?

kube-proxy 是 Kubernetes 集群中负责服务发现和负载均衡的组件之一。它是一个网络代理,运行在每个节点上, 用于 service 资源的负载均衡。它有两种模式:iptables 和 ipvs。 iptables iptables 是 Linux 系统中的一个用户空间实用程序,用于…...

ClickHouse配置与使用

静态IP配置 # 修改网卡配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33# 修改文件内容 TYPEEthernet PROXY_METHODnone BROWSER_ONLYno BOOTPROTOstatic IPADDR192.168.18.128 NETMASK255.255.255.0 GATEWAY192.168.18.2 DEFROUTEyes IPV4_FAILURE_FATALno IPV6INIT…...

将某一个 DIV 块全屏展示

文章目录 需求分析 需求 上节我们研究了如何将页面中的指定 div 下载为图片:跳转查看 本节演技一下如何将 DIV 全屏展示 全屏展示某一个 DIV 分析 其实就是模拟键盘动作 F11 var element document.getElementById(pic) var requestMethod element.requestFullS…...

K8S集群再搭建

前述:总体是非常简单的,就是过程繁琐,不过都是些重复的操作 master成员: [controller-manager, scheduler, api-server, etcd, proxy,kubelet] node成员: [kubelet, proxy] master要修改的配置文件有 1. vi /etc/etcd/etcd.conf # 数…...

工具-博客搭建

以下相关讲解均基于hexo github pages方案,请注意!!!博客搭建方案选择 参考文章1 搭建教程 参考文章1 hexo github pages搭建过程中遇到的问题 删除categories、tags 1、删除含有需要删除categories、tags的文章 2、hexo …...

贪心算法:合并区间

参考资料:代码随想录 题目链接:. - 力扣(LeetCode) 做过用最少数量的箭引爆气球和无重叠区间这两道题目后,题意和题解都不难理解。唯一的一点儿难点是对于api的运用。 class Solution {public int[][] merge(int[][…...

DFA 算法

为什么要学习这个算法 前一段时间遇到了瓶颈,因为词库太多了导致会有一些速度过慢,而且一个正则表达式已经放不下了,需要进行拆分正则才可以。 正好我以前看过有关 dfa 的介绍,但是并没有深入的进行研究,所以就趁着周…...

Web(数字媒体)期末作业

一.前言 1.本资源为类似于打飞机的网页游戏 2.链接如下:【免费】前端web或者数字媒体的期末作业(类似于打飞机的2D网页小游戏)资源-CSDN文库 二.介绍文档...

展现金融科技前沿力量,ATFX于哥伦比亚金融博览会绽放光彩

不到半个月的时间里,高光时刻再度降临ATFX。而这一次,是ATFX不曾拥有的桂冠—“全球最佳在线经纪商”(Best Global Online Broker)。2024年5月15日至16日,拉丁美洲首屈一指的金融盛会—2024年哥伦比亚金融博览会(Money Expo Colombia 2024) 于…...

html 根字号 以及 设置根元素font-size:calc(100vw/18.75)、元素rem实现自适应

rem 单位介绍:rem 是相对文档根元素(html)字体大小的尺寸单位,当元素的尺寸或文字字号等使用 rem 单位时,会随着根元素的 font-size变化而变化。 得出结论:在不同分辨率的设备下动态设置根元素的字体大小就可以实现页面自适应。 …...

size_t无符号数相关知识点

size_t无符号数相关知识点 在代码编译的时候,报错一个warning: comparison between signed and unsigned interger expression [-wsign-compare] 找到代码,告警这一段代码 size_t count timeProtocol.m_intersectionArray.size(); for (u…...

深度学习之基于Tensorflow+Flask框架Web手写数字识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 手写数字识别是深度学习领域中的一个经典问题,也是计算机视觉领域的重要应用之一。…...

2024电工杯B题食谱评价与优化模型思路代码论文分析

2024年电工杯数学建模竞赛B题论文和代码已完成,代码为B题全部问题的代码,论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求解)、模型…...

blender安装cats-blender-plugin-0-19-0插件,导入pmx三维模型

UE5系列文章目录 文章目录 UE5系列文章目录前言一、Blender安装二、cats-blender-plugin-0-19-0插件下载三、下载bmp文件四、在blender2.93中安装cats-blender-plugin-0-19-0插件 前言 blender本身不支持pmx三维模型,需要用到cats-blender-plugin-0-19-0插件。 一…...

[源码+搭建教程]西游伏妖篇手游_GM_单机+和朋友玩

为了学习和研究软件内含的设计思想和原理,本人花心血和汗水带来了搭建教程!!! 教程不适于服架设,严禁服架设!!!请牢记!!! 教程仅限学习使用&…...

windows、mac、linux中node版本的切换(nvm管理工具),解决项目兼容问题 node版本管理、国内npm源镜像切换

文章目录 在工作中,我们可能同时在进行2个或者多个不同的项目开发,每个项目的需求不同,进而不同项目必须依赖不同版本的NodeJS运行环境,这种情况下,对于维护多个版本的node将会是一件非常麻烦的事情,nvm就是…...

【MySQL精通之路】全文搜索-布尔型全文搜索

1.使用方法 MySQL可以使用IN BOOLEAN MODE修饰符执行布尔全文搜索。 使用此修饰符,某些字符在搜索字符串中单词的开头或结尾具有特殊含义。 在下面的查询中,和-运算符分别表示单词必须存在或不存在,才能进行匹配。 因此,查询检…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

生成 Git SSH 证书

🔑 1. ​​生成 SSH 密钥对​​ 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​: -t rsa&#x…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

MySQL的pymysql操作

本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...