当前位置: 首页 > news >正文

matlab在管理学中的应用简matlab基础【三】

规划论及MATLAB计算

1、线性规划

问题的提出

例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的资源A、B、C的消耗以及资源的计划期供给量,如下表:

在这里插入图片描述问题:工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?

在这里插入图片描述
解:设 甲、乙产品的产量分别为x1、x2 ,
工厂获利为 z , 则
目标函数:
Max z = 60x1 + 60x2
约束条件:s.t.
2 x1 + 3 x2 ≤ 180
3 x1 + 2 x2 ≤ 210
x1 + 5 x2 ≤ 250
x1 , x2 ≥ 0
从上述的例子看出,建立数学模型的基本过程是:
1)搞清要解决的问题:目标 和 条件;
2)设置决策变量–描述解决问题的方案;
3)描述约束条件和非负约束;
4)给出目标函数,确定目标函数的优化方向,即优化是对目标函数取最大还是最小。

(2)线性规划模型:一般形式

目标函数:
Max(Min)z = c1 x1 + c2 x2 + … + cn xn
约束条件:s.t.
a11 x1 + a12 x2 + … + a1n xn ≤( =, ≥ )b1
a21 x1 + a22 x2 + … + a2n xn ≤( =, ≥ )b2
…… ……
am1 x1 + am2 x2 + … + amnxn ≤( =, ≥ )bm

                         x1 ,x2 ,… ,xn  ≥ 0

线性规划一般数学模型的矩阵形式

目标函数 max(或min) z=c·x
约束条件 A·x≤ ( =, ≥ ) b
x≥0

式中 c=(c1,c2,…,cn), x=(x1,x2,…,xn)τ

    a11  a12  …  a1n
A=  a21  a22  …  a2n   , b=(b1,b2,…,bm)τ…  am1  am2  …  amn 

3)线性规划模型:标准形式

目标函数:
Max z = c1 x1 + c2 x2 + … + cn xn
约束条件:s.t.
a11 x1 + a12 x2 + … + a1n xn =b1
a21 x1 + a22 x2 + … + a2n xn =b2
…… ……
am1 x1 + am2 x2 + … + amnxn =bm

                         x1 ,x2 ,… ,xn  ≥ 0

线性规划标准型的矩阵形式

目标函数 max z=c·x
约束条件 A·x = b
x≥0

式中 c=(c1,c2,…,cn), x=(x1,x2,…,xn)τ

    a11  a12  …  a1n
A=  a21  a22  …  a2n   , b=(b1,b2,…,bm)τ…  am1  am2  …  amn 

(4)线性规划的图解法

目标函数:
max Z= X1 + X2
约束条件:
在这里插入图片描述
在这里插入图片描述
例1 的图解
目标函数:
Max z = 60 x1 + 60 x2
约束条件:
2 x1 + 3 x2 ≤ 180 (A)
3 x1 + 2 x2 ≤ 210 (B)
x1 + 5 x2 ≤ 250 ©
x1 , x2 ≥ 0 (D)

得到最优解:
x1 = 54, x2 = 24
最优目标值 z = 4680
在这里插入图片描述
解的几种情况:
线性规划的最优解如果存在
则必定有一个顶点(极点)是最优解
① 唯一解
目标函数等值线与约束边界只有一个交点
② 无穷多最优解
目标函数等值线与约束边界平行
③ 无界解
可行域不封闭
④ 无可行解
可行域为空集

(5)线性规划解的概念

引入松驰变量____含义是资源的剩余量
例1 中引入 s1, s2, s3 模型化为 标准型

目标函数:Max z = 60 x1 + 60 x2 + 0 s1 + 0 s2 + 0 s3
约束条件:s.t. 2 x1 + 3 x2 + s1 = 180
3 x1 + 2 x2 + s2 = 210
x1 + 5 x2 + s3 = 250
x1 , x2 , s1 , s2 , s3 ≥ 0

对于标准型的最优解 x1 =54 x2 = 24 , s1 = 0 s2 = 0 s3 = 76
说明:生产54单位甲产品和24单位乙产品将消耗完所有的A、B资源,但对资源C则还剩余76。
基最优解、最优解、基可行解、基解、可行解的关系如下所示:
在这里插入图片描述

(6)线性规划的基本定理

① 线性规划问题的所有可行解构成的集合(可行域)
R={x|A·x=b,x≥0}
R是一凸集(包括无界域),它有有限个顶点;
② 线性规划问题的每个基可行解
对应可行域凸集R的一个顶点;
③ 若线性规划问题有最优解,
则必定在某顶点处得到

基本定理把可行域的有限个顶点与基可行解这一代数概念联系起来,可通过求基可行解的代数方法来得到可行域的一切极点,能在有限的计算中获得最优点。

相关文章:

matlab在管理学中的应用简matlab基础【三】

规划论及MATLAB计算 1、线性规划 问题的提出 例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的资源A、B、C的消耗以及资源的计划期供给量,如下表: 问题:工厂应分别生产多少单位甲、乙产品才能使工厂获…...

NDK JNI 变声器实现

Android NDK 导入 C库的开发流程学习;通过使用fmod的C库,实现变声器功能。导入库文件1)复制fmod的C库到cpp目录下2)复制fmod的so库到jniLibs目录下3)复制fmod的jar库到libs目录下4)将声音文件复制到assets目…...

VMLogin防关联指纹浏览器的主帐号和子账号区别介绍

VMLogin主账户管理子账户,主要用于团队协作,分账户登录使用,主账户相当于老板,子账户相当于员工。 主账户创建并管理子账户; 主账户可以修改子账户的密码; 主账户可以设置子账户是否有创建配置文件权限&a…...

Apache DolphinScheduler GitHub Star 突破 10000!

点击蓝字 关注我们今天,Apache DolphinScheduler GitHub Star 突破 10000,项目迎来一个重要里程碑。这表明 Apache DolphinScheduler 已经在全球的开发者和用户中获得了广泛的认可和使用。DolphinScheduler 旨在解决公司日常运营中的大数据处理工作流调度…...

程序员中的女性力量——做不被定义的自己

她是office lady,亦是程序媛,程序员界的靓丽色彩,不可或缺。 “只有那些疯狂到以为自己能够改变世界的人——才能真正改变世界。” 女性该如何定义自己?程序媛怎么发挥自己最大的价值。 争取自己做选择,经济和思想都独…...

pb中Datawindow中每页打印固定行

Datawindow中每页打印固定行 第一步: 增加一个计算列,此计算列必须放在Detail段,Expression中输入:ceiling(getrow()/20),这里20还可以用全局函数取代,这样可以允许用户任意设置每页打印多少行。 第二步: 定义分组,选择菜单Rows->Create Group...按计算列字段…...

华为OD机试 - 内存池(C 语言解题)【独家】

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 使用说明本期题目:内存池题…...

SaaS简介

SaaS 简介 SaaS被认为是云计算的一部分,其他包括基础设施即服务(IaaS)、平台即服务(PaaS)、桌面即服务(DaaS)、托管软件即服务(MSaaS)、移动后端即服务(MBaaS)、数据中心即服务(DCaaS)、集成平台即服务(iPaaS)和信息技术管理即服务(ITMaaS) SaaS应用程序通常由web浏…...

unity 实现使用三张图片来表达车速,通过传值达到车速

//速度 public Image SpeedNums_Unit; public Image SpeedNums_Ten; //public Image SpeedNums_Hundred; //kw public Image MileageNums_Unit; public Image MileageNums_Ten; /// /// 仪表速度UI /// private void SpeedUI(string speedStr) {if (SpeedNums_Unit == null) …...

程序员看过都说好的资源网站,你值得拥有。

程序员必备的相关资源网站一.技术社区1.GitHub2.Gitee(码云)3.稀土掘金4.OSCHINA开源中国5.CSDN6.博客园7.SegmentFault(思否)8.Stack Overflow9.Golang中文社区10.ChinaUnix11.51CTO12.Ruby China二.技术教程1.Devdocs2.码农教程…...

【MySQL高级篇】第03章 用户与权限管理

第03章 用户与权限管理 1. 用户管理 1.1 登录MySQL服务器 启动MySQL服务后,可以通过mysql命令来登录MySQL服务器,命令如下: mysql –h hostname|hostIP –P port –u username –p DatabaseName –e "SQL语句"-h参数后面接主机…...

MySQL的分库分表?通俗易懂

1- 为什么要分库分表 如果一个网站业务快速发展,那这个网站流量也会增加,数据的压力也会随之而来,比如电商系统来说双十一大促对订单数据压力很大,Tps十几万并发量,如果传统的架构(一主多从)&a…...

elasticsearch 查询语法

match_all 查询所有 GET test/_search {"query": {"match_all": {}} }match 单字段匹配查询 GET test/_search {"query":{"match":{"name":"zhangsan"}} }multi_match 多字段匹配查询 GET test/_search {"…...

深入剖析MVC模型与三层架构

MVC(Model-View-Controller)模型和三层架构都是常见的软件架构模式,用于实现大型应用程序和软件系统。下面是对它们的深入剖析: MVC模型 MVC模型是一种将应用程序分成三个主要组件的软件架构模式,分别是模型&#xf…...

使用 Wall 搭建个人照片墙和视频墙

下载 Github:https://github.com/super-tongyao/wall 国内仓库(不推荐,只做加速访问,无编译包和发行版,以github仓库为准):https://gitee.com/Super_TongYao/wall 推荐github仓库,下载最新版…...

03_Linux压缩解压,用户用户组,文件权限

目录 Linux下常用的压缩格式 gzip 压缩工具 gzip 对文件夹进行压缩 bzip2 压缩工具 tar打包工具 对.tar.bz2 进行压缩和解压缩 对.tar.gz 进行压缩和解压缩 rar格式 zip格式 Linux用户 Linux用户组 创建用户和用户组 Linux文件权限 Linux文件权限修改 Linux下常用…...

硬盘分区数据恢复?这些方法助您解忧

案例:分区把电脑文件丢了,数据还能恢复吗? “急急急!!!本人电脑小白,在使用磁盘管理合并E、F分区的时候,不小心把D分区给删除了,D分区里面存放了很多重要的数据与文件&a…...

高校竞赛信息管理系统

摘要随着当今社会的发展,时代的进步,各行各业也在发生着变化,比如高校竞赛信息管理这一方面,利用网络已经逐步进入人们的生活。传统的高校竞赛信息管理,都是学生去学校查看竞赛信息然后再进行报名,这种传统…...

还是要学好数学啊

有一个无穷大的二维网格图,一开始所有格子都未染色。给你一个正整数 n ,表示你需要执行以下步骤 n 分钟:第一分钟,将任一格子染成蓝色。之后的每一分钟,将与蓝色格子相邻的 所有 未染色格子染成蓝色。下图分别是 1、2、…...

ActiveMQ反序列化漏洞原理+复现

ActiveMQ反序列化漏洞 ActiveMQ ActiveMQ是开源消息总线,消息中间件 工作原理 通过使用消息队列,实现服务的异步处理,主要目的是减少请求响应时间和解耦合。 消息队列,服务器A将客户发起的请求放入服务器B的消息队列中&#…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

【网络安全】开源系统getshell漏洞挖掘

审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

npm安装electron下载太慢,导致报错

npm安装electron下载太慢&#xff0c;导致报错 背景 想学习electron框架做个桌面应用&#xff0c;卡在了安装依赖&#xff08;无语了&#xff09;。。。一开始以为node版本或者npm版本太低问题&#xff0c;调整版本后还是报错。偶尔执行install命令后&#xff0c;可以开始下载…...

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

一、研究背景与创新点 (一)现有方法的局限性 当前智驾系统面临两大核心挑战:一是长尾问题,即系统在遇到新场景时可能失效,例如突发交通状况或非常规道路环境;二是可解释性问题,传统方法无法解释智驾系统的决策过程,用户难以理解车辆行为的依据。传统语言模型(如 BERT…...

【立体匹配】:双目立体匹配SGBM:(1)运行

注&#xff1a;这是一个专题&#xff0c;我会一步步介绍SGBM的实现&#xff0c;按照我的使用和优化过程逐步改善算法&#xff0c;附带实现方法 系列文章【立体匹配】&#xff1a;双目立体匹配SGBM&#xff1a;&#xff08;1&#xff09;运行 【立体匹配】&#xff1a;双目立体匹…...

ubuntu2404 gpu 没接显示器,如何保证远程显示的分辨率

1. 使用 xserver-xorg-video-dummy 创建虚拟显示器 如果系统在无物理显示器连接时无法识别显示输出&#xff0c;可以使用 xserver-xorg-video-dummy 驱动程序创建虚拟显示器。以下是设置步骤&#xff1a; 安装虚拟显示器驱动程序&#xff1a; sudo apt install xserver-xorg-v…...