当前位置: 首页 > news >正文

机器学习实验------Adaboost算法

第1关:什么是集成学习

任务描述

本关任务:根据本节课所学知识完成本关所设置的选择题。
在这里插入图片描述

第2关: Boosting

任务描述

本关任务:根据本节课所学知识完成本关所设置的选择题。
在这里插入图片描述

第3关:Adaboost算法流程

任务描述

本关任务:用Python实现Adaboost,并通过鸢尾花数据集中鸢尾花的2种属性与种类对Adaboost模型进行训练。我们会调用你训练好的Adaboost模型,来对未知的鸢尾花进行分类。


#encoding=utf8import numpy as np#adaboost算法
class AdaBoost:'''input:n_estimators(int):迭代轮数learning_rate(float):弱分类器权重缩减系数'''def __init__(self, n_estimators=50, learning_rate=1.0):self.clf_num = n_estimatorsself.learning_rate = learning_ratedef init_args(self, datasets, labels):self.X = datasetsself.Y = labelsself.M, self.N = datasets.shape# 弱分类器数目和集合self.clf_sets = []# 初始化weightsself.weights = [1.0/self.M]*self.M# G(x)系数 alphaself.alpha = []    def _G(self, features, labels, weights):'''input:features(ndarray):数据特征labels(ndarray):数据标签weights(ndarray):样本权重系数'''#********* Begin *********#m = len(features)error = 100000.0 # 无穷大beat_v = 0.0#单维featuresfeatures_min = min(features)features_max = max(features)n_step = (features_max-features_min+self.learning_rate) // self.learning_ratedirect,compare_array = None,Nonefor i 

相关文章:

机器学习实验------Adaboost算法

第1关:什么是集成学习 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 第2关: Boosting 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 第3关:Adaboost算法流程 任务描述 本关任务:用Python实现Adaboost,并通过鸢尾花数据集…...

点云处理中阶 Octree模块

一、什么是Octree 八叉树(Octree)是一种用于描述三维空间的树状数据结构。八叉树的每个节点表示一个正方体的体积元素,每个节点有八个子节点,这八个子节点所表示的体积元素加在一起就等于父节点的体积。一般中心点作为节点的分叉中…...

Nginx实现负载均衡与故障检查自动切换

创作灵感来源于个人项目的一个稳定性规划,单节点的项目稳定性方面可能有很大的缺漏,因此需要升级为多节点,保证服务故障后,依然有其他服务可用,不会给前端用户造成影响。 (前面讲选型,想直接看…...

2024年学浪视频怎么下载到手机相册

随着2024年的到来,学浪平台继续为广大学习者提供优质的在线教育资源。然而,如何将这些宝贵的视频内容下载到手机相册,方便随时离线观看呢?无论您是想在旅途中学习,还是希望在没有网络的情况下复习课程,本文…...

【北京市政府网_注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...

工作中的冲突,职场人士应如何化解

在职场中,冲突和分歧是不可避免的现象。它们可能来源于工作分配不均、目标不一致、价值观差异或个性不合等。面对这些冲突和分歧,我们需要具备有效的冲突管理技巧来化解问题,以维持团队的和谐与工作效率。 分析冲突的原因至关重要。通常来说&…...

企业级大数据平台建设方案

企业级大数据平台建设方案 方案简介硬件软件分布式存储:Foreman作为集群管理工具Sparkcloudera 方案简介 该方案是多年前在Roadstar.ai任职时的建设方案,现将方案部分细节开源,结合本博客的其他文章,能够建立可靠的企业大数据平台…...

HTML语义化标签:为何它们如此重要?

HTML语义化标签:为何它们如此重要? 引言1. HTML语义化标签的基本概念2. HTML语义化标签的作用2.1 提升网页可读性2.2 增强可访问性2.3 优化搜索引擎排名2.4 提高性能 3. 代码示例结尾讨论 引言 在前端开发的世界里,HTML作为构建网页的基础语…...

详细介绍一下Votenet的工作原理及流程

Votenet是一种基于深度学习的三维目标检测和实例分割方法,其工作原理主要包括两个步骤:候选框生成和目标分类与分割。 1.候选框生成: 首先,Votenet通过将三维点云数据转化为连续的坐标网格,将三维目标检测问题转化为二…...

使用Autofit.js和React实现自适应布局

1. 什么是Autofit.js? Autofit.js是一个用于自适应网页布局的JavaScript库,它可以根据元素的尺寸和屏幕的大小,自动调整布局和排列方式,以适应不同的设备和分辨率。它提供了简单易用的API,可以帮助我们轻松实现各种自…...

Kafka之【存储消息】

Kafka之【存储消息】...

鸿蒙开发配置官方地图

一共需要配置 p12 p7b cer csr 四个文件 p12文件配置 注意创建文件名必须是.p12 到AGC创建项目 AppGallery Connect 添加自己的项目名称 我没有开启 暂时不需要 看个人需求 下载刚创建的cer证书 回到我的项目中 点击刚创建的项目 点击这里 四个文件齐全了 "metadata&qu…...

《天道》丁元英格律诗商业案例完整拆解(上)

目录 公司启动缘由 我们开公司也好、做任何其他事请也罢。 1997 年 3 月: 北京摆摊、租店面、仓库: 1997 年 4 月前: 向斯雷克音响店下订货单; 1997 年 6 月: 格林、伦敦、巴黎三个城市当托; 1998 …...

2024年山东省安全员C证证模拟考试题库及山东省安全员C证理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年山东省安全员C证证模拟考试题库及山东省安全员C证理论考试试题是由安全生产模拟考试一点通提供,山东省安全员C证证模拟考试题库是根据山东省安全员C证最新版教材,山东省安全员C证大纲整理…...

微软开源多模态大模型Phi-3-vision,微调实战来了

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型& AIGC 技术趋势、大模型& AIGC 落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了…...

架构二。。

1、CAP 只能3选2 1)一致性(Consistency) 客户每次读都是返回最新的写操作结果 2)可用性(Availability) 非故障节点在合理的时间内返回合理的响应 3)分区容忍性(Partition Tolerance…...

《Google 软件工程》读书笔记

1. 写在前面 在图书馆瞎逛,偶然瞄见一本《Google 软件工程》Titus Winters, Tom Manshreck, Hyrum Wright 著。主要是在这一排的书架上就这本书看着挺新的(不知道为什么有一种喜欢看新书的情节),而且最近被领导老批评,…...

研发机构大数据迁移如何保障敏感数据不泄露

随着云计算和大数据技术的飞速进步,越来越多的企业正试图通过数据迁移来提升IT基础设施的效率,减少成本,并增强业务的灵活性。但是,这一过程并非没有它的挑战,尤其是在数据安全方面。数据在转移过程中可能会遭遇黑客攻…...

【Spring Security系列】权限之旅:SpringSecurity小程序登录深度探索

作者:后端小肥肠 创作不易,未经允许严禁转载。 姊妹篇: 【Spring Security系列】Spring SecurityJWTRedis实现用户认证登录及登出_spring security jwt 退出登录-CSDN博客 1. 前言 欢迎来到【Spring Security系列】!在当今数字化…...

​​​【收录 Hello 算法】第 10 章 搜索

目录 第 10 章 搜索 本章内容 第 10 章 搜索 搜索是一场未知的冒险,我们或许需要走遍神秘空间的每个角落,又或许可以快速锁定目标。 在这场寻觅之旅中,每一次探索都可能得到一个未曾料想的答案。 本章内容 10.1 二分查找10.2 二…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...