当前位置: 首页 > news >正文

【C++】详解AVL树——平衡二叉搜索树

个人主页:东洛的克莱斯韦克-CSDN博客

祝福语:愿你拥抱自由的风

目录

二叉搜索树

AVL树概述

平衡因子

旋转情况分类

左单旋

右单旋

左右双旋

右左双旋

AVL树节点设计

AVL树设计

详解单旋

左单旋

右单旋

详解双旋

左右双旋

平衡因子情况如下

右左双旋

平衡因子情况如下


二叉搜索树

【C++】详解二叉搜索树-CSDN博客

AVL树概述

平衡树:左子树的高度等于右子树的高度

不平衡树:左子树的高度不等于等于右子树的高度

二叉搜索树很难是一颗平衡树。

对二叉树进行插入和删除的操作,或插入大量的数据不够随机,都会是使二叉搜索树不够平衡。

极端情况下,二叉树会退化成类似链表的结构,那么二叉搜索树查询数据的效率荡然无存。

在二叉树的基础上加入平衡的概念就是平衡二叉搜索树,也叫AVL树

AVL树也不是一颗绝对的平衡树,AVL树的平衡是相对的,它允许左子树和右子树的高度为 1 ,但不能超过 1

平衡是相对的很好理解,因为一个父亲节点最多只能有两个孩子节点,而数据又是一个一个插入的,所以一定会出现左子树和右子树高度差为 1 的情况。

B树可达到绝对平衡,因为B树是多叉结构——一个父亲节点有多个孩子节点

如果左子树和右子树的高度差为 2 就视为打破平衡

如果打破平衡,就需要通过旋转这一操作让左右子树的高度差小于等于 1 。

AVL树是保持一种相对平衡的状态,而不是绝对平衡。那么AVL树搜索数据的效率只能是接近O(logN)

AVL树只是保证了搜索效率的下限,而不是提高了上限

平衡因子

平衡因子这一概念并不是AVL树所必备的——从代码实现的角度来说,如果不加入平衡因子的概念理解起来会比较抽象。

平衡因子:让每个节点存一个整型,该整形值的大小等于右子树的高度减左子树的高度

平衡因子等于 0 左右子树平衡

平衡因子等于 1左右子树相对平衡,右树偏高

平衡因子等于 -1 :左右子树相对平衡,左树树偏高

平衡因子等于 2 -2左右子树不平衡

平衡因子的更新:

插入父亲节点的右边平衡因子加加,插入父亲节点的右边平衡因子减减

父亲节点更新后的平衡因子等于 1 或 -1 ,需要不断往上(溯源)更新,直到父亲节点的平衡因子为 0 或 更新至整棵树的根节点就停止更新

如果父亲节点的平衡因子为 2 或 -2 时,需要对这棵子树旋转,旋转后更新平衡因子

示例

旋转情况分类

旋转分为:

左单旋 右单旋  左右双旋  右左双旋

左单旋

:新节点插入较高右子树的右侧

具象图:

抽象图:

那么左单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的左孩子成为fathernode的右孩子,

再让fathernode成为cur的左孩子。

如下示意图

右单旋

:新节点插入较高左子树的左侧

具象图:

抽象图:

那么右单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的右孩子成为fathernode的左孩子,

再让fathernode成为cur的右孩子

如下示意图:

左右双旋

:新节点插入在较高左子树的右侧——先左单旋再右单旋

左右双旋的核心步骤为:

设父亲节点为:fathernode 

父亲的左孩子节点为:fathernodeL

父亲的左孩子节点的右孩子节点的为fathernodeLR

先让fathernodeL左单旋,再让fathernodeLR进行右单旋

这里小编直接上抽象图:

右左双旋

:新节点插入再较高右子树的左侧——先右单旋再左单旋

设父亲节点为:fathernode 

父亲的 右孩子节点为:fathernodeR

父亲的右孩子节点的左孩子节点的为fathernodeRL

先对fathernodeR进行右单旋,再对fathernode进行左单旋。

示意图:

AVL树节点设计

【C++】详解C++的模板-CSDN博客

AVL树的节点需要三个指针,分别指向左孩子节点,右孩子节点,父亲节点。指向父亲节点的指针是为了能溯源更新平衡因子。

需要一个整型存储平衡因子,平衡因子在构造函数的初始化列表中初始化为 0,因为新节点左右孩子都为空。

template <class K>
class AVLTreeNode
{
public:AVLTreeNode(const K& key) //构造函数:_key(key), _left(nullptr), _right(nullptr), _FatherNode(nullptr), _bf(0){}K _key; //键值   AVLTreeNode<K>* _left;//左孩子AVLTreeNode<K>* _right;//右孩子AVLTreeNode<K>* _FatherNode;//父亲  int _bf;//平衡因子};

AVL树设计

template <class K>
class AVLTree
{typedef AVLTreeNode<K> node; node* _root;public:AVLTree()  //构造函数,初始化为空树:_root(nullptr){}bool Insert(const K& key)//插入元素{
//if (nullptr == _root) //是否是空树{_root = new node(key);  return true;}
//node* cur = _root;node* fathernode = nullptr;while (cur)  //查找插入的位置,如果树中已经有要插入的值,则插入失败,{if (cur->_key < key){fathernode = cur;cur = cur->_right;}else if (cur->_key > key){fathernode = cur;cur = cur->_left;}else{return false;}}cur = new node(key); //新插入节点 if (fathernode->_key < cur->_key) //判断新节点应该是左孩子还是右孩子{fathernode->_right = cur;cur->_FatherNode = fathernode;}else{fathernode->_left = cur;cur->_FatherNode = fathernode;}//while (fathernode)//更新平衡因子{if (cur == fathernode->_left){fathernode->_bf--;}else  if (cur == fathernode->_right){fathernode->_bf++;}//if (fathernode->_bf == 0){// 更新结束break;}else if (fathernode->_bf == 1 || fathernode->_bf == -1){// 继续往上更新cur = fathernode;fathernode = fathernode->_FatherNode;}else if (fathernode->_bf == 2 || fathernode->_bf == -2){// 子树不平衡了,需要旋转if (fathernode->_bf == 2 && cur->_bf == 1){RevolveLeft(fathernode);//左单旋}else if (fathernode->_bf == -2 && cur->_bf == -1){RevolveRight(fathernode);//右单旋}else if (fathernode->_bf == 2 && cur->_bf == -1){RevolveRightLeft(fathernode); //右左双旋   }else if (fathernode->_bf == -2 && cur->_bf == 1){RevolveLeftRight(fathernode);//左右双旋}else{assert(false);   //平衡因子出问题了}break;}}return true;}}

下面通过代码的细节来深入理解旋转

详解单旋

左单旋

完整代码如下

void RevolveLeft(node *& fathernode)//左单旋      
{node* cur = fathernode->_right; //父亲节点的右孩子fathernode->_right = cur->_left; //更改指向关系if (cur->_left != nullptr) //特殊情况cur->_left->_FatherNode = fathernode;//更改指向关系cur->_FatherNode = fathernode->_FatherNode;//更改指向关系if (fathernode->_FatherNode != nullptr) //为空是特殊情况,{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更改指向关系}else{fathernode->_FatherNode->_left = cur;//更改指向关系}}cur->_left = fathernode;//更改指向关系fathernode->_FatherNode = cur;//更改指向关系fathernode->_bf = 0; //更新平衡因子cur->_bf = 0;}

处理指向关系时,一定不要忘了更改父亲的指向关系

经过左单旋之后,父亲节点和右孩子节点的平衡因子都为 0 ,可参考上文图示。

特殊情况如下,如果不处理特殊情况,程序很容易崩溃

右单旋

void RevolveRight(node *& fathernode) //右单旋
{node* cur = fathernode->_left; //父亲节点的左节点fathernode->_left = cur->_right;//更新指向关系if (cur->_right != nullptr) //特殊情况cur->_right->_FatherNode = fathernode;//更新指向关系cur->_FatherNode = fathernode->_FatherNode;//更新指向关系if (fathernode->_FatherNode != nullptr)//特殊情况{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更新指向关系}else{fathernode->_FatherNode->_left = cur;//更新指向关系}}cur->_right = fathernode;//更新指向关系fathernode->_FatherNode = cur;//更新指向关系fathernode->_bf = 0;//更新平衡因子cur->_bf = 0;
}

详解双旋

左右双旋

左右双旋只需复用左单旋和右单旋即可,但平衡因子的更新却比较麻烦

完整代码如下

	void RevolveLeftRight(node *& fathernode)//左右双旋    {node* fathernodeL = fathernode->_left; //父亲节点的左孩子节点node* fathernodeLR = fathernodeL->_right;//父亲节点的左孩子节点的右孩子节点int bf = fathernodeLR->_bf; //保存平衡因子,实际是为了判断是插入了fathernodeLR左边还是右边还是fathernodeLR本身插入RevolveLeft(fathernodeL);RevolveRight(fathernode);//更新平衡因子if (bf == 0){fathernode->_bf = 0;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == -1){fathernode->_bf = 1;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == 1){fathernodeL->_bf = -1;fathernode = 0;fathernodeLR = 0;}else{assert(false);}}

平衡因子情况如下

右左双旋

完整代码如下

	void RevolveRightLeft(node *& fathernode) //右左双旋 {node* fathernodeR = fathernode->_right; node* fathernodeRL = fathernodeR->_left;int bf = fathernodeRL->_bf;RevolveRight(fathernodeR);RevolveLeft(fathernode);if (bf == 0){fathernode->_bf = 0;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == 1){fathernode->_bf = -1;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == -1){fathernodeR->_bf = 1;fathernode->_bf = 0;fathernodeRL->_bf = 0;}else{assert(false); }}

平衡因子情况如下

相关文章:

【C++】详解AVL树——平衡二叉搜索树

个人主页&#xff1a;东洛的克莱斯韦克-CSDN博客 祝福语&#xff1a;愿你拥抱自由的风 目录 二叉搜索树 AVL树概述 平衡因子 旋转情况分类 左单旋 右单旋 左右双旋 右左双旋 AVL树节点设计 AVL树设计 详解单旋 左单旋 右单旋 详解双旋 左右双旋 平衡因子情况如…...

《计算机网络微课堂》2-2 物理层下面的传输媒体

请大家注意&#xff0c;传输媒体不属于计算机网络体系结构的任何一层&#xff0c;如果非要将它添加到体系结构中&#xff0c;‍‍那只能将其放在物理层之下。 传输媒体可分为两类&#xff1a;一类是导引型传输媒体&#xff0c;‍‍另一类是非导引型传输媒体。 在导引型传输媒体…...

【算法设计与分析】基于Go语言实现动态规划法解决TSP问题

本文针对于最近正在学习的Go语言&#xff0c;以及算法课实验所需内容进行Coding&#xff0c;一举两得&#xff01; 一、前言 由于这个实验不要求向之前的实验一样做到那种连线的可视化&#xff0c;故可以用图形界面不那么好实现的语言进行编写&#xff0c;考虑到Go语言的…...

Golang单元测试

文章目录 传统测试方法基本介绍主要缺点 单元测试基本介绍测试函数基准测试示例函数 传统测试方法 基本介绍 基本介绍 代码测试是软件开发中的一项重要实践&#xff0c;用于验证代码的正确性、可靠性和预期行为。通过代码测试&#xff0c;开发者可以发现和修复潜在的错误、确保…...

mac下安装airflow

背景&#xff1a;因为用的是Mac的M芯片的电脑&#xff0c;安装很多东西都经常报错&#xff0c;最近在研究怎么把大数据集群上的crontab下的任务都配置到一个可视化工具中&#xff0c;发现airflow好像是个不错的选择&#xff0c;然后就研究怎么先安装使用起来&#xff0c;后面再…...

二进制中1的个数c++

题目描述 计算鸭给定一个十进制非负整数 NN&#xff0c;求其对应 22 进制数中 11 的个数。 输入 输入包含一行&#xff0c;包含一个非负整数 NN。(N < 10^9) 输出 输出一行&#xff0c;包含一个整数&#xff0c;表示 NN 的 22 进制表示中 11 的个数。 样例输入 100 …...

【面试干货】数据库乐观锁,悲观锁的区别,怎么实现

【面试干货】数据库乐观锁&#xff0c;悲观锁的区别&#xff0c;怎么实现 1、乐观锁&#xff0c;悲观锁的区别2、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 1、乐观锁&#xff0c;悲观锁的区别 悲观锁&#xff08;Pessimistic Lo…...

移动端仪表盘,支持更多组件

05/22 主要更新模块概览 定位函数 快捷筛选 轨迹图表 时间组件 01 表单管理 1.1 【表单组件】- 表单关联新增支持自定义按钮样式 说明&#xff1a; 表单关联-关联数据按钮&#xff0c;原仅支持默认按钮样式&#xff0c;现增加关联数据按钮自定义功能&#xff0c;满…...

科技产业园3D探秘:未来科技之城的奇幻之旅

在数字时代的浪潮中&#xff0c;科技产业园区成为了推动城市经济发展、科技创新的重要引擎。 当我们打开科技产业园的3D可视化模型&#xff0c;仿佛穿越时空&#xff0c;来到了一个充满奇幻色彩的科技世界。在这里&#xff0c;高楼大厦鳞次栉比&#xff0c;绿色植被点缀其间&am…...

【Python搞定车载自动化测试】——Python基于Pytest框架实现UDS诊断自动化(含Python源码)

系列文章目录 【Python搞定车载自动化测试】系列文章目录汇总 文章目录 系列文章目录&#x1f4af;&#x1f4af;&#x1f4af; 前言&#x1f4af;&#x1f4af;&#x1f4af;一、环境搭建1.软件环境2.硬件环境 二、目录结构三、源码展示1.诊断基础函数方法2.诊断业务函数方法…...

探索SPI单线传输模式中时钟线与数据传输的简化

探索SPI单线传输模式&#xff1a;时钟线与数据传输的简化之道 在当今的嵌入式系统和微控制器通信中&#xff0c;串行外设接口&#xff08;SPI&#xff09;因其高速、全双工和同步的特点而广受欢迎。然而&#xff0c;随着设备尺寸和复杂性的不断减少&#xff0c;对SPI通信的简化…...

使用FFmpeg推流实现在B站24小时点歌直播

使用FFmpeg推流实现在B站24小时点歌直播 本文首发于个人博客 安装FFmpeg centos7 https://www.myfreax.com/how-to-install-ffmpeg-on-centos-7/ https://linuxize.com/post/how-to-install-ffmpeg-on-centos-7/ 使用FFmpeg在B站直播 https://zhuanlan.zhihu.com/p/2395…...

汽车防抱死制动系统ABS的单片机程序Proteus仿真设计

次设计对汽车防抱死系统进行简单的设计,针对车速、轮速两个信号进行分析,并根据最佳滑移率计算。采用对比实时滑移率对比分析,ECU控制制动器进行制动力调节使滑移率在制动过程处于最佳范围,保证系统具有良好制动性能。 汽车的制动液压调节器主要包含以下几个部件:调压电磁…...

IOS开发者证书快捷申请

App Uploader 在进行iOS应用开发中,可以借助appuploader辅助工具进行证书制作、上传和安装测试等操作。首先,您需要访问官方网站获取最新版本的appuploader。最新版本已经优化了与Apple账号的登录流程,无需支付688元,并提供了Windows版和Mac版供用户选择。下载完成后,解压…...

python 火焰检测

在日常生活,总是离不开火,有时候我们需要预防火灾发生,但是我们又不可能一直盯着,这时候我们就需要一款程序帮我们盯着,一旦发生火灾从而告知我们,今天就带大家编写这么一款应用。 安装需要的库 pip install opencv-python 代码实现 import cv2 # Library for…...

栈——顺序存储

#include<stdio.h> #define MaxSize 10 //栈的所有操作时间复杂度都是O(1) //定义 typedef struct{int data[MaxSize];int top; //栈顶指针&#xff0c;永远指向栈顶元素 }SqStack;//初始化&#xff0c;使栈顶指针指向-1 void InitStack(SqStack &S){S.top-1; }…...

军队仓库管理系统|DW-S301系统特点

部队仓库管理系统DW-S301系统通过数据采集、互联网和物联网技术&#xff0c;实现数字化智能管控&#xff0c;以提高军用物资的仓储准确率和流转率&#xff0c;缩短周转时间&#xff0c;降低库存成本&#xff0c;也有助于消除生产过程中的不确定性。 系统功能&#xff1a;通过部…...

MySQL和MongoDB数据库的区别

MySQL和MongoDB数据库的区别 随着大数据和云计算技术的兴起&#xff0c;数据库的选择成为开发者和架构师必须面对的重要决策。MySQL和MongoDB作为关系型数据库和非关系型数据库的代表&#xff0c;在各自领域都有着广泛的应用。本文将从多方面详细比较MySQL和MongoDB&#xff0…...

类脑计算和量子计算、人工智能的关系

According to www.iAsk.ai Ask Ai Search Engine: 类脑计算、量子计算和人工智能是三个不同但相关的领域。它们在不同层面上探索和利用了不同的计算模型和技术&#xff0c;但都旨在推动计算能力的发展和创新。 类脑计算是一种受到人脑神经系统启发的计算模型。它试图通过模拟…...

Qt5 互动地图,实现无人机地面站效果

一、概述 本文主要通过Qt5opmapcontrol实现一个简单的无人机地面站效果。opmapcontrol是一个比较古老的QT开源地面站库&#xff0c;可选择谷歌地图&#xff0c;必应地图&#xff0c; 雅虎地图&#xff0c;GIS等。可直接使用源码&#xff0c;也可以编译生成库进行调用。实现效果…...

【文末附gpt升级方案】TikTok Symphony AI套件:智能视频制作的新篇章

TikTok Symphony AI套件&#xff1a;智能视频制作的新篇章 摘要 随着短视频平台的兴起&#xff0c;视频内容的创作与制作已成为品牌方吸引用户、传递信息的重要手段。TikTok作为全球领先的短视频平台&#xff0c;近日宣布推出Symphony AI套件&#xff0c;旨在通过人工智能技术…...

面试回答——有高并发、高性能、高可用系统架构设计实践以及性能调优经验

&#x1f308;hello&#xff0c;你好鸭&#xff0c;我是Ethan&#xff0c;一名不断学习的码农&#xff0c;很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 &#x1f3c3;人生之义&#xff0c;在于追求&#xff0c;不在成败&#xff0c;勤通…...

rocketmq初识

package com.ldj.rocketmq.producer;import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message;import java.nio.charset.StandardCharsets;/*** User: ldj* Date: 2024/3/26* Time: 2:26* Description: 单向消息生产…...

php 使用phpoffice导出导出excel

荆轲刺秦王 在PHP中&#xff0c;可以使用 PhpSpreadsheet 库来创建和导出Excel文件。PhpSpreadsheet 是一个纯PHP 编写的组件库&#xff0c;它使用现代 PHP 写法&#xff0c;代码质量和性能比 PHPExcel 高不少&#xff0c;完全可以替代PHPExcel&#xff08;PHPExcel已不再维护…...

安装docker版elasticsearch和kibana

本文将介绍用docker的方式安装elasticsearch和kibana&#xff0c;并用浏览器访问elasticsearch。这里的elasticsearch主要给测试环境使用&#xff0c;因此不会设置https和密码。kibana是elasticsearch的前端&#xff0c;可以用来访问elasticsearch&#xff0c;展示数据图表、搜…...

大语言模型的工程技巧(四)——梯度检查点

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型&#xff1a;从线性回归到通用人工智能》&#xff0c;欢迎有兴趣的读者多多支持。 本文将讨论如何利用梯度检查点算法来减少模型在训练时候&#xff08;更准确地说是运行反向传播算法时&#xff09;的内存开支。…...

批量复制文件智能删除已复制,轻松管理文件新体验!让您的文件整理更高效无忧

在信息爆炸的时代&#xff0c;文件管理无疑成为我们日常生活和工作中不可或缺的一部分。面对堆积如山的文件&#xff0c;我们时常陷入无尽的复制、粘贴、删除循环中&#xff0c;不仅耗时耗力&#xff0c;还容易出错。但今天&#xff0c;我要向您推荐一款颠覆传统的文件管理工具…...

从零训练yolov8

1.收集数据 2.数据标注 pip install labelimg3.划分数据集 0.2的验证机0.8的训练集 import os from shutil import copyfile from sys import exit import randomsource r"D:\Data\imgs\screenc" \\ target_train r"D:\Data\imgs\datasets\mydata\images\t…...

民国漫画杂志《时代漫画》第14期.PDF

时代漫画14.PDF: https://url03.ctfile.com/f/1779803-1247458399-6732ac?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps:资源来源网络&#xff01;...

maven-依赖管理

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Maven BOM二、使用三、SpringBoot的依赖管理 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 依赖管理能带来啥&#xff1a; 避免…...