Day21:Leetcode513.找树左下角的值 +112. 路径总和 113.路径总和ii + 106.从中序与后序遍历序列构造二叉树
LeetCode:513.找树左下角的值
解决方案:
1.思路
- 在遍历一个节点时,需要先把它的非空右子节点放入队列,
- 然后再把它的非空左子节点放入队列,这样才能保证从右到左遍历每一层的节点。
- 广度优先搜索所遍历的最后一个节点的值就是最底层最左边节点的值。
class Solution {public int findBottomLeftValue(TreeNode root) {int ret = 0;//基于数组的双端队列Queue<TreeNode> queue = new ArrayDeque<TreeNode>();queue.offer(root);while (!queue.isEmpty()) {TreeNode p = queue.poll();if (p.right != null) {queue.offer(p.right);}if (p.left != null) {queue.offer(p.left);}//如果当前队列不为空。当前根节点既没有左节点,也没有右节点,那么就把此该节点赋值给retret = p.val;}return ret;}
}
3.复杂度分析
LeetCode:112. 路径总和
解决方案:
1.思路:
递归三部曲:
- 函数返回类型和参数;
- 终止条件;
- 递归逻辑
递归逻辑
2.代码实现
public class Solution {private boolean traversal(TreeNode cur, int count) {if (cur.left == null && cur.right == null && count == 0) return true; // 遇到叶子节点,并且计数为0if (cur.left == null && cur.right == null) return false; // 遇到叶子节点直接返回if (cur.left != null) { // 左count -= cur.left.val; // 递归,处理节点;if (traversal(cur.left, count)) return true;count += cur.left.val; // 回溯,撤销处理结果}if (cur.right != null) { // 右count -= cur.right.val; // 递归,处理节点;if (traversal(cur.right, count)) return true;count += cur.right.val; // 回溯,撤销处理结果}return false;}public boolean hasPathSum(TreeNode root, int sum) {if (root == null) return false;return traversal(root, sum - root.val);}
}
3.复杂度分析
LeetCode:113.路径总和ii
解决方案:
1.思路:
- 思路同112
- 但是注意递归函数不再有返回值,而是用一个 path数组接住;然后再用一个result数组接住所有path;
2.代码实现
public class Solution {private List<List<Integer>> result = new ArrayList<>();private List<Integer> path = new ArrayList<>();// 递归函数不需要返回值,因为我们要遍历整个树private void traversal(TreeNode cur, int count) {if (cur.left == null && cur.right == null && count == 0) { // 遇到了叶子节点且找到了和为sum的路径result.add(new ArrayList<>(path));return;}if (cur.left == null && cur.right == null) return; // 遇到叶子节点而没有找到合适的边,直接返回if (cur.left != null) { // 左 (空节点不遍历)path.add(cur.left.val);count -= cur.left.val;traversal(cur.left, count); // 递归count += cur.left.val; // 回溯path.remove(path.size() - 1); // 回溯}if (cur.right != null) { // 右 (空节点不遍历)path.add(cur.right.val);count -= cur.right.val;traversal(cur.right, count); // 递归count += cur.right.val; // 回溯path.remove(path.size() - 1); // 回溯}}public List<List<Integer>> pathSum(TreeNode root, int sum) {result.clear();path.clear();if (root == null) return result;path.add(root.val); // 把根节点放进路径traversal(root, sum - root.val);return result;}
}
3.复杂度分析
- 时间复杂度:O(N),其中N是树中节点的数量。这是因为每个节点在递归过程中会被访问一次。尽管存在递归调用,但每个节点只被访问并处理一次,因此总体时间复杂度线性依赖于树的大小,而不是递归深度。
- 空间复杂度:最坏情况下,当树完全不平衡,且每一条从根到叶子的路径都满足题目条件时,递归的深度达到最大,此时的空间复杂度由递归栈的深度决定,为O(N)。最好情况下(即树完全平衡),递归的最大深度为log(N),因此在这种情况下,空间复杂度为O(log(N))。但由于我们还需要存储路径(path),在最坏情况下(每条边都构成解),这也会占用O(N)的空间。因此,综合考虑,整体的空间复杂度也是O(N)。
LeetCode:106.从中序与后序遍历序列构造二叉树
解决方案:
1.思路:
- 利用遍历特性:中序遍历(左根右)确定节点在序列中的相对位置,后序遍历(左右根)的最后一个元素总是当前子树的根节点
- 递归思想:通过递归不断地将问题分解为更小的子问题,直到达到基础情况(空列表),然后逐层返回,逐步构建整棵树。
- 动态调整遍历列表:每次递归调用前,根据当前子树的信息调整中序和后序遍历列表,确保传入的列表仅对应当前子树的信息。
2.代码实现
import java.util.ArrayList;
import java.util.List;public class Solution {private TreeNode traversal(List<Integer> inorder, List<Integer> postorder) {if (postorder.size() == 0) return null;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder.get(postorder.size() - 1);TreeNode root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder.get(delimiterIndex) == rootValue) break;}// 切割中序数组List<Integer> leftInorder = new ArrayList<>(inorder.subList(0, delimiterIndex));List<Integer> rightInorder = new ArrayList<>(inorder.subList(delimiterIndex + 1, inorder.size()));// postorder 舍弃末尾元素postorder.remove(postorder.size() - 1);// 切割后序数组List<Integer> leftPostorder = new ArrayList<>(postorder.subList(0, leftInorder.size()));List<Integer> rightPostorder = new ArrayList<>(postorder.subList(leftInorder.size(), postorder.size()));root.left = traversal(leftInorder, leftPostorder);root.right = traversal(rightInorder, rightPostorder);return root;}public TreeNode buildTree(List<Integer> inorder, List<Integer> postorder) {if (inorder.size() == 0 || postorder.size() == 0) return null;return traversal(inorder, postorder);}
}
3.复杂度分析
- 时间复杂度:尽管递归深度会影响栈的空间复杂度,但从时间复杂度的角度看,每个节点都会导致一次遍历操作和一次分割操作,总的时间复杂度与树中节点数量成正比,即O(n)。这里的n代表树中节点的总数。
- 空间复杂度:该算法的时间复杂度为O(n),空间复杂度在最坏情况下也是O(n),主要是由于递归调用栈的深度可能达到O(n)。在实际应用中,若二叉树较为平衡,空间复杂度可以视为O(log n)
相关文章:

Day21:Leetcode513.找树左下角的值 +112. 路径总和 113.路径总和ii + 106.从中序与后序遍历序列构造二叉树
LeetCode:513.找树左下角的值 解决方案: 1.思路 在遍历一个节点时,需要先把它的非空右子节点放入队列,然后再把它的非空左子节点放入队列,这样才能保证从右到左遍历每一层的节点。广度优先搜索所遍历的最后一个节点…...

Java数据结构和算法(B树)
前言 B树又叫平衡的多路搜索树;平衡的意思是又满足平衡二叉树的一些性质,左树大于右树; 多路意思是,可以多个结点,不再是像二叉树只有两个结点; 实现原理 B树是一种自平衡的搜索树,通常用于实…...

成为程序员后我都明白了什么?从入行到弃坑?
作为一个入行近10年的php程序员,真心感觉一切都才刚开始,对计算机,编程语言的理解也好,程序员中年危机也罢,之前都是听别人说的,真的自己到了这个水平,这个年龄才深刻体会到这其中的种种。 我一…...

python --创建固定字符串长度,先进先出
a 123def concatenate_within_limit(b, new_string):# 计算新字符串与a的长度之和a btotal_length len(a) len(new_string)# 如果长度超过1024,从前面删除足够的字符if total_length > 5:diff total_length - 5a a[diff:] new_string # 删除前diff个字符…...

容器化部署
目录 docker容器化部署 怎样使用Docker Compose或Kubernetes等容器编排工具来管理和扩展联邦学习系统 使用Docker Compose...

国产数据库TiDB的常用方法
TiDB的常用方法主要涉及安装配置、数据操作、性能调优以及监控和维护等方面。以下是对这些常用方法的归纳和介绍: 1. 安装与配置 安装TiDB:根据官方文档的指引,用户可以按照步骤进行TiDB的安装。配置TiDB:安装完成后,…...

基于DdddOcr通用验证码离线本地识别SDK搭建个人云打码接口Api
前言 最近介绍了一款免费的验证码识别网站,识别效率太低,考虑到ddddocr是开源的,决定搭建搭建一个,发现原作者sml2h3已经推出好久了,但是网上没有宝塔安装的教程,于是本次通过宝塔搭建属于自己的带带弟弟OCR通用验证码离线本地识别 原项目地址:https://github.com/sml2…...

2、xss-labs之level2
1、打开页面 2、传入xss代码 payload:<script>alert(xss)</script>,发现返回<script>alert(xss)</script> 3、分析原因 打开f12,没什么发现 看后端源码,在这form表单通过get获取keyword的值赋给$str&am…...

人才测评的应用:人才选拔,岗位晋升,面试招聘测评
人才测评自诞生以来,就被广泛应用在各大方面,不仅是我们熟悉的招聘上,还有其他考核和晋升,都会需要用到人才测评。不知道怎么招聘?或者不懂得如何实现人才晋升?都可以参考人才测评,利用它帮我们…...

前端面试题日常练-day33 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末。 在jQuery中,以下哪个选项用于在元素上绑定一个点击事件? a) click() b) bind() c) on() d) trigger() jQuery中,以下哪个选项用于获取元素的属性值? …...

非整数倍数据位宽转换24to128
描述 实现数据位宽转换电路,实现24bit数据输入转换为128bit数据输出。其中,先到的数据应置于输出的高bit位。 电路的接口如下图所示。valid_in用来指示数据输入data_in的有效性,valid_out用来指示数据输出data_out的有效性;clk是时…...

html通过数据改变,图片跟着改变
改变前 改变后 通过数据来控制样式展示 <template><div>通过num控制图标是否更改{{num}}<div class"box"><!-- 如果num大于1则是另一种,样式,如果小时1,则是另一种样式 --><div class"item&qu…...

centos7.9 安装SqlServer
1、导入Microsoft SQL Server CentOS存储库: sudo curl -o /etc/yum.repos.d/mssql-server.repo https://packages.microsoft.com/config/rhel/7/mssql-server-2019.repo2、安装SQL Server: sudo yum install -y mssql-server假如机器内存不足2G 需要对…...

Idea中flume的Interceptor的编写教程
1.新建-项目-新建项目 注意位置是将来打包文件存放的位置,即我们打包好的文件在这/export/data个目录下寻找 2. 在maven项目中导入依赖 Pom.xml文件中写入 <dependencies> <dependency> <groupId>org.apache.flume</groupId> <artifa…...

java单元测试:JUnit测试运行器
JUnit测试运行器(Test Runner)决定了JUnit如何执行测试。JUnit有多个测试运行器,每个运行器都有特定的功能和用途。 1. 默认运行器 当没有显式指定运行器时,JUnit会使用默认运行器,这在JUnit 4和JUnit 5之间有所不同…...

网络模型—BIO、NIO、IO多路复用、信号驱动IO、异步IO
一、用户空间和内核空间 以Linux系统为例,ubuntu和CentOS是Linux的两种比较常见的发行版,任何Linux发行版,其系统内核都是Linux。我们在发行版上操作应用,如Redis、Mysql等其实是无法直接执行访问计算机硬件(如cpu,内存…...

智能语义识别电影机器人的rasa实现
文章目录 0.前言1.项目整体框架2.rasa训练数据结构4.rasa启动命令及用到的API 0.前言 最近做了一个智能电影机器人的项目,我主要负责用户语义意图识别,用的框架是rasa,对应的版本为 3.6.15,对应的安装命令为: pip3 install rasa…...

C# 实现腾讯云 IM 常用 REST API 之会话管理
目录 关于腾讯 IM REST API 开发前准备 范例运行环境 常用会话管理API 查询账号会话总未读数 查询单聊会话消息记录 下载最近会话记录 小结 关于腾讯 IM REST API REST API 是腾讯即时通信 IM 提供给服务端的一组 HTTP 后台管理接口,如消息管理、群组管理…...

MySQL之Schema与数据类型优化(三)
Schema与数据类型优化 BLOB和TEXT类型 BLOB和TEXT都是为存储很大的数据而设计的字符串数据类型,分别采用二进制和字符方式存储。 实际上它们分别属于两组不同的数据类型家族:字符类型是TINYTEXT,SMALLTEXT,TEXT,MEDIUMTEXT,LONG…...

大语言模型发展历史
大语言模型的发展历史可以追溯到自然语言处理(NLP)和机器学习早期的探索,但真正快速发展起来是在深度学习技术兴起之后。以下是大语言模型发展的一个简要历史概述: 早期阶段(20世纪50-90年代): …...

Nginx - 安全基线配置与操作指南
文章目录 概述中间件安全基线配置手册1. 概述1.1 目的1.2 适用范围 2. Nginx基线配置2.1 版本说明2.2 安装目录2.3 用户创建2.4 二进制文件权限2.5 关闭服务器标记2.6 设置 timeout2.7 设置 NGINX 缓冲区2.8 日志配置2.9 日志切割2.10 限制访问 IP2.11 限制仅允许域名访问2.12 …...

简述js的事件循环以及宏任务和微任务
前言 在JavaScript中,任务被分为同步任务和异步任务。 同步任务:这些任务在主线程上顺序执行,不会进入任务队列,而是直接在主线程上排队等待执行。每个同步任务都会阻塞后续任务的执行,直到它自身完成。常见的同步任…...

[力扣题解] 797. 所有可能的路径
题目:797. 所有可能的路径 思路 深度搜索 代码 // 图论哦!class Solution { private:vector<vector<int>> result;vector<int> path;// x : 当前节点void function(vector<vector<int>>& graph, int x){int i;// cout <&l…...

【QT八股文】系列之篇章3 | QT的多线程以及QThread与QObject
【QT八股文】系列之篇章3 | QT的多线程 前言4. 多线程为什么需要使用线程池线程池的基础知识python中创建线程池的方法使用threading库队列Queue来实现线程池使用threadpool模块,这是个python的第三方模块,支持python2和python3 QThread的定义QT多线程知…...

基于python flask的web服务
基本例子 from flask import Flask app Flask(__name__) app.route(/)#检查访问的网址,根路径走这里 def hello_world():return hello world#返回hello worldif __name__ __main__:# 绑定到指定的IP地址和端口app.run(host0.0.0.0, port1000, debugTrue)##绑定端…...

HTTP 响应分割漏洞
HTTP 响应分割漏洞 1.漏洞概述2.漏洞案例 1.漏洞概述 HTTP 响应拆分发生在以下情况: 数据通过不受信任的来源(最常见的是 HTTP 请求)进入 Web 应用程序。该数据包含在发送给 Web 用户的 HTTP 响应标头中,且未经过恶意字符验证。…...

Algoriddim djay Pro Ai for Mac:AI引领,混音新篇章
当AI遇上音乐,会碰撞出怎样的火花?Algoriddim djay Pro Ai for Mac给出了答案。这款专业的DJ混音软件,以AI为引擎,引领我们进入混音的新篇章。 djay Pro Ai for Mac的智能混音功能,让每一位DJ都能感受到前所未有的创作…...

常见算法(3)
1.Arrays 它是一个工具类,主要掌握的其中一个方法是srot(数组,排序规则)。 o1-o2是升序排列,o2-o1是降序排列。 package test02; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparat…...

集中抄表电表是什么?
1.集中抄表电表:简述 集中抄表电表,又称为远程抄表系统,是一种现代化电力计量技术,为提升电力行业的经营效率和客户服务质量。它通过自动化的形式,取代了传统人工抄水表,完成了数据信息实时、精确、高效率…...

第八届能源、环境与材料科学国际学术会议(EEMS 2024)
文章目录 一、重要信息二、大会简介三、委员会四、征稿主题五、论文出版六、会议议程七、出版信息八、征稿编辑 一、重要信息 会议官网:http://ic-eems.com主办方:常州大学大会时间:2024年06月7-9日大会地点:新加坡 Holiday Inn …...