当前位置: 首页 > news >正文

洛谷P3574 [POI2014] FAR-FarmCraft(树形dp)

洛谷 P 3574 [ P O I 2014 ] F A R − F a r m C r a f t (树形 d p ) \Huge{洛谷P3574 [POI2014] FAR-FarmCraft(树形dp)} 洛谷P3574[POI2014]FARFarmCraft(树形dp

文章目录

  • 题意
    • 题目说明
  • 思路
  • 标程

题目链接:P3574 [POI2014] FAR-FarmCraft - 洛谷

题意

给出 n n n个节点、 n − 1 n-1 n1条边的一棵无根树;经过每条边所用时间都为 1 1 1。然后每个节点都有点权 b [ i ] b[i] b[i]

题目故事:管理员从自己家(一号节点)出发,然后将一批电脑分发给每个节点的居民,每个居民得到电脑后会立即开始下载游戏,下载游戏的时间为点权 b [ i ] b[i] b[i]

管理员每次经过某节点就相当于直接分发给居民。

管理员的车恰好能够走每条路两遍。

要求计算出管理员从开始配送到所有居民都能玩上游戏所用最少时间。

题目说明

给一棵树,走过每条边需要花费一个时间,安装软件又需要花费一个时间,需要遍历整棵树并回到起点,想让所有点中到达时间+安装时间的最大值最小,问这个值是多少?

思路

跟据题目要求,显然能够知道,题目要求求出所有居民中最后玩上游戏的居民所用时间,并且要求这个时间最小。

跟据题目说明,我们可以想到:对于同一个节点的子节点,大致的贪心思路是先遍历点权最大的节点

但是可能会出现一种情况(画的比较丑陋,多多见谅):
在这里插入图片描述

但是我们可以注意到题目有限制条件**“管理员的车恰好能够走每条路两遍”**,那么我们就不用考虑这种情况了。

一般地,我们用 f [ i ] f[i] f[i]表示节点 i i i这棵子树中的最大值 d e p [ i ] dep[i] dep[i]表示从节点 i i i出发遍历其子树并返回所用的总时间 b [ i ] b[i] b[i]表示点权

容易发现,这道题属于树形dp中的选择节点型,只不过需要判断的是选择子节点的先后顺序。

那么对应的状态转移方程即为:
f [ x ] = max ⁡ ( f [ x ] , d e p [ x ] + max ⁡ ( f [ i ] , f [ j ] + d e p [ i ] + 2 ) + 1 ) f[x]=\max(f[x], dep[x]+\max(f[i],f[j]+dep[i]+2)+1) f[x]=max(f[x],dep[x]+max(f[i],f[j]+dep[i]+2)+1)
其中 x x x为当前节点, i , j i,j i,j表示它的其中两个子节点。需要解释一下:

  • 方程中的+2是因为从一个子节点到另一个子节点的两段路。
  • 方程中的+1是因为从 x x x节点到子节点的一段路。

但是该这样进行状态转移,我们需要对子节点相互比较,其时间复杂度为 O ( n 2 ) O(n^2) O(n2),会超时。

我们考虑优化状态转移方程:

  • 如果先 i i i j j j max ⁡ ( f [ i ] , f [ j ] + d e p [ i ] + 2 ) \max(f[i],f[j]+dep[i]+2) max(f[i],f[j]+dep[i]+2)

  • 如果先 j j j i i i max ⁡ ( f [ j ] , f [ i ] + d e p [ j ] + 2 ) \max(f[j],f[i]+dep[j]+2) max(f[j],f[i]+dep[j]+2)

  • 因为 f [ i ] < f [ i ] + d e p [ j ] + 2 f[i] <f[i]+dep[j]+2 f[i]<f[i]+dep[j]+2 f [ j ] < f [ j ] + d e p [ i ] + 2 f[j]<f[j]+dep[i]+2 f[j]<f[j]+dep[i]+2

  • 原式可化为: max ⁡ ( f [ j ] + d e p [ i ] + 2 , f [ i ] + d e p [ j ] + 2 ) \max(f[j]+dep[i]+2,f[i]+dep[j]+2) max(f[j]+dep[i]+2,f[i]+dep[j]+2)

  • 即为: f [ i ] − d e p [ i ] < f [ j ] − d e p [ j ] f[i]-dep[i]<f[j]-dep[j] f[i]dep[i]<f[j]dep[j](当选 j j j时成立)

因此在判断选取子节点时,可以先对子节点按照上述不等式排序,即为选取子节点的先后顺序。

最后需要注意的是,dfs过程中我们并没有判断根节点的时间,需要输出时进行判断取 m a x max max

标程

#include<bits/stdc++.h>using namespace std;#define IOS ios::sync_with_stdio(false); cin.tie(nullptr), cout.tie(nullptr);
#define int long long 
#define ULL unsigned long long 
#define PII pair<int, int>
#define lowbit(x) (x & -x)
#define Mid ((l + r) >> 1)
#define ALL(x) x.begin(), x.end()
#define endl '\n'
#define fi first 
#define se secondconst int INF = 0x7fffffff;
const int Mod = 1e9 + 7;
const int N = 5e5 + 10;int n;
vector<int> a[N];
int b[N], dep[N], f[N];void dfs(int x, int y) {if(x != 1) f[x] = b[x];for(auto i : a[x]) {if(i == y) continue;dfs(i, x);}sort(ALL(a[x]), [](int n1, int n2) {return dep[n1] - f[n1] < dep[n2] - f[n2];});for(auto i : a[x]) {if(i == y) continue;f[x] = max(f[x], f[i] + dep[x] + 1);dep[x] += dep[i] + 2;}
}void Solved() {cin >> n;for(int i = 1; i <= n; i ++ ) {cin >> b[i];}for(int i = 1; i < n; i ++ ) {int x, y; cin >> x >> y;a[x].push_back(y); a[y].push_back(x);}dfs(1, 0);cout << max(f[1], dep[1] + b[1]) << endl;
}signed main(void) {IOSint ALL = 1; // cin >> ALL;while(ALL -- ) Solved();// cout << fixed;//强制以小数形式显示// cout << setprecision(N); //保留n位小数return 0;
}

相关文章:

洛谷P3574 [POI2014] FAR-FarmCraft(树形dp)

洛谷 P 3574 [ P O I 2014 ] F A R − F a r m C r a f t &#xff08;树形 d p &#xff09; \Huge{洛谷P3574 [POI2014] FAR-FarmCraft&#xff08;树形dp&#xff09;} 洛谷P3574[POI2014]FAR−FarmCraft&#xff08;树形dp&#xff09; 文章目录 题意题目说明 思路标程 题目…...

vue/core源码中ref源码的js化

起源&#xff1a; 当看见reactivity文件中的ref.ts文件长达五百多的ts代码后&#xff0c;突发奇想想看下转化成js有多少行。 进行转化&#xff1a; let shouldTrack true; // Define shouldTrack variable let activeEffect null; // Define activeEffect variable// 定义…...

准备打ccf

准备打ccf...

k8s遇到的错误记录

时隔四年有开始重新鼓捣k8s了&#xff0c;重新安装后遇到的错误记录如下&#xff1a; Error: Package: kubelet-1.14.0-0.x86_64 (kubernetes) Requires: kubernetes-cni 0.7.5 Available: kubernetes-cni-0.3.0.1-0.07a8a2.x86_64 (kubernetes) …...

全局平均池化笔记

全局平均池化&#xff08;Global Average Pooling, GAP&#xff09;是一种用于卷积神经网络&#xff08;CNN&#xff09;中的池化操作&#xff0c;其主要作用和优点包括&#xff1a; 减少参数数量&#xff1a;全局平均池化层将每个特征图通过取其所有元素的平均值&#xff0c;压…...

【数仓系列】maxcompute、postgresql、sparksql等行转列数据处理实战总结(其他类型持续总结更新)

1.熟悉、梳理、总结项目研发实战中的SQL开发日常使用中的问题、经验总结&#xff0c;都是常用的开发技能&#xff0c;可以省去很多时间&#xff0c;时间长就忘记了 2.欢迎点赞、关注、批评、指正&#xff0c;互三走起来&#xff0c;小手动起来&#xff01; 文章目录 1.maxcompu…...

用数据,简单点!奇点云2024 StartDT Day数智科技大会,直播见

在充满挑战的2024&#xff0c;企业如何以最小化的资源投入和试错成本&#xff0c;挖掘新的增长机会&#xff0c;实现确定性发展&#xff1f; “简单点”是当前商业环境的应对策略&#xff0c;也是奇点云2024 StartDT Day的核心理念。 5月28日&#xff0c;由奇点云主办的2024 S…...

Cloneable接口和深拷贝

在java中如何对对象进行拷贝呢&#xff1f;我们可以使用Object类中的clone方法。 一、浅拷贝 在使用clone方法对对象进行拷贝的时候&#xff0c;需要注意&#xff1a; 1.需要重写clone方法&#xff1b; 2.clone方法的返回值是Object类&#xff0c;需要强制类型转化&#xf…...

C++:vector的介绍及使用

✨✨✨学习的道路很枯燥&#xff0c;希望我们能并肩走下来! 文章目录 文章目录 前言 一、vector的介绍 二、vector的使用 2.1.构造和赋值重载&#xff08;Member functions&#xff09; 2.2 vector iterator 的使用 2.3 vector 空间增长问题 2.4 vector 增删查改 三 sort 四 v…...

【机器学习】大模型在机器学习中的应用:从深度学习到生成式人工智能的演进

&#x1f512;文章目录&#xff1a; &#x1f4a5;1.引言 ☔2.大模型概述 &#x1f6b2;3.大模型在深度学习中的应用 &#x1f6f4;4.大模型在生成式人工智能中的应用 &#x1f44a;5.大模型的挑战与未来展望 &#x1f4a5;1.引言 随着数据量的爆炸性增长和计算能力的提…...

营销短信XML接口对接发送示例

在现代社会中&#xff0c;通信技术日新月异&#xff0c;其中&#xff0c;短信作为一种快速、简便的通信方式&#xff0c;仍然在日常生活中占据着重要的地位。为了满足各种应用场景的需求&#xff0c;短信接口应运而生&#xff0c;成为了实现高能有效通信的关键。 短信接口是一种…...

【C语言刷题系列】求一个数组中两个元素a和b的和最接近整数m

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;C语言刷题系列 目录 一、问题描述 二、解题思路 解题思路&#xff1a; 解题步骤: 三、C语言代码实现及测试 一、问题描述 给定一…...

Python pdf2imges -- pdf文件转图片

pdf文件转图片&#xff0c;需要安装PyMuPDF包&#xff0c;具体PyMuPDF包介绍可以参考&#xff1a;Python 处理 PDF 的神器 -- PyMuPDF import fitz # pip install PyMuPDF# PDF转换为IMG统一管理 def pdf_to_images(pdf_path, img_path, filename):"""pdf_p…...

分布式版本控制工具 git

git 是什么 分布式版本控制工具。github 是代码托管平台。 git 有什么用 保存文件的所有修改记录。使用版本号&#xff08;sha1 哈希值&#xff09; 进行区分。随时可浏览历史版本记录。可还原到历史指定版本。对比不同版本的文件差异。 为什么要使用 git 多人协作开发一个大…...

Flutter 中的 ExpansionTile 小部件:全面指南

Flutter 中的 ExpansionTile 小部件&#xff1a;全面指南 在 Flutter 应用中&#xff0c;ExpansionTile 是一个常用的折叠列表项&#xff0c;它允许用户点击标题来展开或折叠更多的内容。这个组件在实现可折叠列表、FAQ 部分或显示详情信息时非常有用。本文将详细介绍 Expansi…...

二进制的协议的测试程序

一、引子 由于要调试二进制私有协议&#xff0c;不想用C重头到尾写&#xff0c;用C写工程量有点大&#xff0c;因此想找一个比较简单的工具&#xff0c;postman无法实现&#xff0c;外界的几乎找不到合适的工具&#xff0c;只能考虑手写一个。 前面写了一个python通过tcp协议发…...

多线程事务

一、业务场景 我们在工作中经常会到往数据库里插入大量数据的工作&#xff0c;但是既需要保证数据的一致性&#xff0c;又要保证程序执行的效率。因此需要在多线程中使用事务&#xff0c;这样既可以保证数据的一致性&#xff0c;又能保证程序的执行效率。但是spring自带的Trans…...

春秋云境CVE-2020-26048

简介 CuppaCMS是一套内容管理系统&#xff08;CMS&#xff09;。 CuppaCMS 2019-11-12之前版本存在安全漏洞&#xff0c;攻击者可利用该漏洞在图像扩展内上传恶意文件&#xff0c;通过使用文件管理器提供的重命名函数的自定义请求&#xff0c;可以将图像扩展修改为PHP&#xf…...

MySQL 带游标的存储过程(实验报告)

一、实验名称&#xff1a; 带游标的存储过程 二、实验日期&#xff1a; 2024 年 5月 25 日 三、实验目的&#xff1a; 掌握MySQL带游标的存储过程的创建及调用&#xff1b; 四、实验用的仪器和材料&#xff1a; 硬件&#xff1a;PC电脑一台&#xff1b; 配置&#xff1…...

结构体(位段)内存分配

结构体由多个数据类型的成员组成。那编译器分配的内存是不是所有成员的字节数总和呢&#xff1f; 首先&#xff0c;stu的内存大小并不为29个字节&#xff0c;即证明结构体内存不是所有成员的字节数和。   其次&#xff0c;stu成员中sex的内存位置不在21&#xff0c;即可推测…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...