ICML2024 定义新隐私保护升级:DP-BITFIT新型微调技术让AI模型学习更安全
DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!
引言:差分隐私在大模型微调中的重要性和挑战
在当今的深度学习领域,大型预训练模型的微调已成为提高各种任务性能的关键技术。然而,当涉及到敏感数据时,如何在保证数据隐私的前提下进行有效的模型微调,成为了一个重大的挑战。差分隐私(Differential Privacy, DP)提供了一种强有力的隐私保护机制,通过在优化过程中添加随机噪声,来保护训练数据的隐私。

尽管差分隐私技术能够有效地保护用户数据不被泄露,但它也带来了新的挑战,尤其是在大模型的微调过程中。这些挑战主要包括:1) 如何在保持模型性能的同时,实现有效的隐私保护;2) 如何在不显著增加计算和存储开销的情况下,应用差分隐私技术。为了解决这些问题,研究者们提出了多种差分隐私微调方法,如DP-BiTFiT,它通过仅微调模型的偏置项,显著降低了参数的数量,从而减少了计算和存储的需求,同时保持了与全参数微调相当的准确性。
论文标题: Differentially Private Bias-Term only Fine-tuning of Foundation Models
机构: AWS AI, UC Santa Barbara
论文链接: https://arxiv.org/pdf/2210.00036.pdf
项目地址: 未提供
通过这种创新的微调方法,研究者们不仅在理论上提供了差分隐私保护的可能性,也在实际应用中展示了其在处理大规模数据和模型时的高效性和实用性。这为使用敏感数据的深度学习应用提供了新的可能性,使得在保护隐私的同时,也能够利用大数据的优势,推动AI技术的发展。
DP-BiTFiT方法概述
1. 差分隐私的基本概念
差分隐私(Differential Privacy,简称DP)是一种隐私保护技术,它通过在数据发布或查询过程中添加随机噪声,来保护个体数据的隐私。差分隐私的核心思想是,通过算法对数据集进行处理后,即使攻击者拥有除了某个个体之外的所有其他数据,也很难判断该个体是否存在于原始数据集中。
2. BiTFiT方法的基础
BiTFiT是一种参数高效的微调方法,它主要优化模型的偏置项(bias terms),而不是所有参数。这种方法的优势在于,偏置项通常只占模型总参数的很小一部分,因此BiTFiT可以在不牺牲模型性能的情况下,显著减少需要训练的参数数量。
3. DP-BiTFiT的创新点
DP-BiTFiT方法结合了差分隐私和BiTFiT的优势,提出了一种差分隐私偏置项微调方法。这种方法在保持BiTFiT参数效率的同时,引入差分隐私机制,有效保护了训练数据的隐私。DP-BiTFiT不仅保持了模型的高准确率,还显著提高了计算效率,几乎消除了因引入差分隐私而带来的额外计算开销。

参数效率与计算效率
1. 参数效率的展示
DP-BiTFiT在多个大型模型上的实验表明,该方法只需训练大约0.1%的参数即可达到与全参数微调相当的效果。这种高参数效率使得DP-BiTFiT在处理参数众多的大型模型时具有明显优势,尤其是在分布式学习场景中,可以显著降低通信成本。

2. 计算效率的对比分析
与传统的全参数微调方法相比,DP-BiTFiT在时间和空间复杂度上都有显著优势。实验结果显示,DP-BiTFiT在执行时间上比差分隐私全参数微调快2到30倍,内存使用量也减少了2到8倍。这种高效的计算性能使得DP-BiTFiT能够有效地应用于长序列文本和高分辨率图像等计算密集型任务,这些任务在使用传统差分隐私微调方法时往往难以处理。

实验设置与数据集介绍
1. 文本分类任务
在文本分类任务中,我们使用了四个数据集:MNLI(m),即多类型自然语言推理语料库的匹配分割;QQP,即Quora问题对数据集;QNLI,即斯坦福问答数据集;SST2,即斯坦福情感树库数据集。这些数据集被用于评估不同的文本分类算法的性能。
2. 图像分类任务
对于图像分类任务,我们使用了CIFAR10和CIFAR100数据集,以及CelebA数据集。这些数据集分别包含了不同类型和数量的图像,用于测试不同图像分类方法的效果。我们在这些数据集上进行了多轮实验,以评估不同的训练方法在处理图像数据时的性能和效率。

实验结果与分析
1. 文本分类的准确性结果
在文本分类任务中,DP-BiTFiT在RoBERTa模型上的测试准确率表现优异。例如,在SST2数据集上,RoBERTa-base模型在不同的隐私保护级别下,准确率均能达到90%以上,显示出DP-BiTFiT方法在保持数据隐私的同时,仍能保持较高的分类准确性。

2. 图像分类的准确性结果
在图像分类任务中,DP-BiTFiT同样表现出良好的准确性。例如,在CIFAR100数据集上,通过预训练和细调,准确率可以达到88.7%,这显示了DP-BiTFiT在处理高维图像数据时的有效性。
3. 计算效率和内存使用的对比
DP-BiTFiT在计算效率和内存使用上具有显著优势。例如,在处理长序列文本和高分辨率图像任务时,DP-BiTFiT比DP全参数微调快2到30倍,且使用的内存少2到8倍。这一优势使得DP-BiTFiT在需要处理大规模数据和复杂模型时,成为一个非常有吸引力的选择。

讨论与未来方向
1. DP-BiTFiT的优势总结
DP-BiTFiT作为一种差分隐私偏置项微调方法,展现出了显著的优势。首先,它是模型无关的,能够在不修改网络架构的情况下,通过仅训练约0.1%的参数,达到与全参数微调相媲美的精度。其次,DP-BiTFiT在计算效率上具有明显优势,几乎消除了差分隐私带来的时间和空间复杂性增加。在多种任务中,DP-BiTFiT的速度比全参数微调快2到30倍,内存使用量减少2到8倍,甚至超过了标准的全参数微调。这种高效性使得DP-BiTFiT能够有效处理长序列文本和高分辨率图像等计算密集型任务。
2. 未来研究方向的展望
未来的研究可以在几个方向上进一步扩展DP-BiTFiT的应用和优化。首先,考虑将DP-BiTFiT与其他参数高效的微调方法如前缀调整或权重调整结合,形成新的混合微调策略,以适应不同层次的需求和优化目标。其次,可以探索在更广泛的模型和任务中应用DP-BiTFiT,特别是在小模型或复杂任务中,通过层次化的微调策略来优化性能。此外,进一步减少计算和内存开销,提高模型在实际部署中的可用性和效率,也是未来研究的重要方向。

总结:回顾DP-BiTFiT的主要贡献及其在实际应用中的潜力
DP-BiTFiT作为一种创新的差分隐私偏置项微调方法,其主要贡献在于实现了高精度、高参数效率和高计算效率的隐私保护模型训练。通过仅训练模型的0.1%参数,DP-BiTFiT不仅保持了与全参数微调相当的精度,还显著降低了计算和内存需求,使得在资源受限的环境中也能高效运行。这些优势使得DP-BiTFiT在处理敏感数据时,特别是在需要处理大规模数据集或高维数据时,展现出巨大的应用潜力。未来,通过进一步的优化和扩展,DP-BiTFiT有望在更多的隐私敏感领域发挥重要作用,为保护个人隐私提供更强大的技术支持。
关注DeepVisionary 了解更多深度学习前沿科技信息&顶会论文分享!
相关文章:
ICML2024 定义新隐私保护升级:DP-BITFIT新型微调技术让AI模型学习更安全
DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! 引言:差分隐私在大模型微调中的重要性和挑战 在当今的深度学习领域,大型预训练模型的微调已成为提高各种任务性能的关键技术。然而&am…...
网络空间安全数学基础·整除与同余
主要内容: 整除的基本概念(掌握) 素数(掌握) 同余的概念(掌握) 1.1整除 定义:设a,b是任意两个整数,其中b≠0,如果存在一个整数q,使 …...
同旺科技 FLUKE ADPT 隔离版发布 ---- 说明书
所需设备: 1、FLUKE ADPT 隔离版 内附链接; 应用于:福禄克Fluke 12E / 15BMax / 17B Max / 101 / 106 / 107 应用于:福禄克Fluke 15B / 17B / 18B...
云计算-角色、特性和模型 (Roles, Characteristics, and Models)
角色、特性和模型 (Roles, Characteristics, and Models) 角色和边界 (Roles and Boundaries) 为了识别云计算模型,我们首先需要了解各种参与者的角色和边界。由于云系统通常遵循面向服务的模型,我们需要了解服务提供者和服务订阅者之间的边界。我们将遵…...
介绍一下Hugging Face,这个公司的背景是什么
Hugging Face是一家成立于2016年的人工智能公司,专注于为AI研究人员和开发者提供开源模型库和工具。以下是关于Hugging Face公司的详细背景介绍: 公司历史与创始人: Hugging Face由Clment Delangue、Julien Chaumond和Thomas Wolf三位法国籍…...
【C++高阶(一)】继承
目录 一、继承的概念 1.继承的基本概念 2.继承的定义和语法 3.继承基类成员访问方式的变化 编辑 4.总结 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 1.派生类中的默认构造函数 2.派生类中的拷贝构造函数 3.派生类中的移动构造函数…...
AI原生嵌入式矢量模型数据库ChromaDB-部署与使用指南
在人工智能大模型领域, 离不开NLP技术,在NLP中词向量是一种基本元素,如何存储这些元素呢? 可以使用向量数据库ChromeDB Chroma Chroma 是 AI 原生开源矢量数据库。Chroma 通过为 LLM 提供知识、事实和技能,使构建 L…...
c# 画一个正弦函数
1.概要 c# 画一个正弦函数 2.代码 using System; using System.Drawing; using System.Windows.Forms;public class SineWaveForm : Form {private const int Width 800;private const int Height 600;private const double Amplitude 100.0;private const double Period…...
Docker学习(3):镜像使用
当运行容器时,使用的镜像如果在本地中不存在,docker 就会自动从 docker 镜像仓库中下载,默认是从 Docker Hub 公共镜像源下载。 一、列出镜像列表 可以使用 docker images 来列出本地主机上的镜像。 各个选项说明: REPOSITORY&am…...
【Git】版本控制工具——Git介绍及使用
目录 版本控制版本控制系统的主要目标分类小结 分布式版本控制系统——GitGit特点Git与SVN的区别Git的工作机制 Git安装Git 团队协作机制团队内协作跨团队协作远程仓库远程仓库的作用有以下几个方面远程仓库操作流程/团队协作流程 Git分支什么是分支分支的好处 Git的常用命令Gi…...
面试八股之JVM篇3.6——垃圾回收——强引用、弱引用、虚引用、软引用
🌈hello,你好鸭,我是Ethan,一名不断学习的码农,很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 🏃人生之义,在于追求,不在成败,勤通…...
博客摘录「 Sql Server 收缩日志文件原理及always on 下的实践」2024年5月22日
四、Always on 环境下实践 先对数据库进行完整备份: EXEC sp_configure show advanced options, 1; RECONFIGURE; EXEC sp_configure xp_cmdshell, 1; RECONFIGURE; DECLARE DbName NVARCHAR(1000); DECLARE myCursor CURSOR LOCAL STATIC FOR S…...
每日一题(5)——StringBuffer操作
编写程序,对StringBuffer对象进行追加,插入和修改缓冲区长度等操作; class StringDemo{public static void main(String[] args){boolean btrue;int i321;long l123456;String s1new String("Hello,world!");StringBuffer s2new S…...
默认路由实现两个网段互通实验
默认路由实现两个网段互通实验 **默认路由:**是一种特殊的静态路由,当路由表中与数据包目的地址没有匹配的表项时,数据包将根据默认路由条目进行转发。默认路由在某些时候是非常有效的,例如在末梢网络中,默认路由可以…...
ComfyUI完全入门:图生图局部重绘
大家好,我是每天分享AI应用的萤火君! 这篇文章的主题和美女有关,不过并不是教大家生产美女视频,而是讲解 ComfyUI 的图生图局部重绘,其中将会以美女图片为例,来展示局部重绘的强大威力。 先看看效果&…...
基于UDP的网络多人聊天室
UDP服务器 #include <myheader.h>//宏定义打印错误信息 #define PRINT_ERR(msg) \do \{ \printf("%S,%D,%S\n",__FI…...
美国FDA认证是什么,食品FDA注册申请流程
美国FDA认证是什么? 美国FDA认证,全称为美国食品药品监督管理局(Food and Drug Administration)的认证,是美国政府为了确保食品、药品、医疗器械等产品的安全性和有效性所设立的重要制度。FDA认证的种类繁多&#x…...
golang的context和chan 的使用
1. context 作用 context包的context的接口,主要是控制协程执行上下文的时间,以及取消程序的执行,以及上下文中传递数据等作用,golang中耗时或者需要协同的操作都会见到context的身影。 context有几个常用的方法 1.1 context.B…...
洛谷P3574 [POI2014] FAR-FarmCraft(树形dp)
洛谷 P 3574 [ P O I 2014 ] F A R − F a r m C r a f t (树形 d p ) \Huge{洛谷P3574 [POI2014] FAR-FarmCraft(树形dp)} 洛谷P3574[POI2014]FAR−FarmCraft(树形dp) 文章目录 题意题目说明 思路标程 题目…...
vue/core源码中ref源码的js化
起源: 当看见reactivity文件中的ref.ts文件长达五百多的ts代码后,突发奇想想看下转化成js有多少行。 进行转化: let shouldTrack true; // Define shouldTrack variable let activeEffect null; // Define activeEffect variable// 定义…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
