当前位置: 首页 > news >正文

Langchain-Chatchat的markdownHeaderTextSplitter使用

文章目录

    • 背景
    • 排查步骤
      • 官方issue排查
      • 测试正常对话
      • 测试官方默认知识库
      • Debug排查
        • vscode配置launch.json
        • 命令行自动启动conda
        • debug知识库搜索
        • 测试更换ChineseRecursiveTextSplitter分词器
      • 结论
    • 关于markdownHeaderTextSplitter的探索
      • 标准的markdown测试集
      • Langchain区分head1和head2
      • Langchain区分head1,head2,head3
      • Langchain-Chatchat测试结果
      • 分析Langchain-Chatchat的markdown文件加载
      • 为什么Langchain-Chatchat会丢失标题
    • 后记

背景

接上篇Langchain-Chatchat之pdf转markdown格式,pdf转markdown之后,使用官方的markdownHeaderTextSplitter分词器,创建完知识库之后进行问答,结果发现大模型无法正常返回,且日志报错如下:

  File "/home/jfli/anaconda3/envs/py3.11/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 493, in _astreamif len(chunk["choices"]) == 0:^^^^^^^^^^^^^^^^^^^^^
TypeError: Caught exception: object of type 'NoneType' has no len()

markdownHeaderTextSplitter这个分词器和markdown格式不是天生一对吗?为什么会出现这种报错?

排查步骤

官方issue排查

  1. https://github.com/chatchat-space/Langchain-Chatchat/issues/2062
    1. 重新install dashscope 无效
    2. 升级fschat 无效
  2. https://github.com/chatchat-space/Langchain-Chatchat/issues/3727
    1. 官方回答说这种类型的回答都代表大模型输出内容不对导致的。
    2. 所以就是要确认大模型是可用的,确认知识库的搜索结果是否符合预期。

测试正常对话

正常对话没问题,且大模型回复自己是千问,说明大模型也正常加载使用。

测试官方默认知识库

测试sample知识库的问题,结果是可以正常回复。说明大模型对于知识库的问答是生效的状态。

Debug排查

vscode配置launch.json
{// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387"version": "0.2.0","configurations": [{"name": "Langchain-Chatchat","type": "debugpy","request": "launch","program": "${workspaceFolder}/startup.py","args": ["-a"],"console": "integratedTerminal","python": "/home/xxx/anaconda3/envs/py3.11/bin/python"}]
}

命令行自动启动conda

因为环境依赖都在conda下,如果不配置自动开启conda的话,服务会因为缺少依赖起不来。

配置launch.json的参数中没办法设置conda环境。有一种使用方法是先定义个task.json,在launch.json中定义preLaunchTask制定先运行task.json,在task.json中启动conda环境。
参考:利用launch.json和tasks.json 文件进行vscode 调试以及自动编译_tasks.json make编译-CSDN博客
经验证,没有成功。
第二种方法是直接修改zshrc文件,在文件下面新增:

conda activate py3.11

这样每次打开新的终端都会自动启动conda环境,缺点就是每次启动py3.11环境,如果需要切换环境的话需要自己手动切换。

debug知识库搜索
  1. 初始化模型
    1. 实例化模型的时候,api地址对应的端口是20000image.png
  2. 查看知识库搜索结果
    1. 可以看到在向量库已经拿到数据了,根据向量返回的内容组装context,请求大模型出错。image.png
    2. 查看启动配置,发现model_worker已经正常启动了
2024-05-11 17:52:50 | INFO | model_worker | Register to controller
INFO:     Started server process [3818873]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:7861 (Press CTRL+C to quit)
  1. 为什么请求大模型是走的20000这个端口呢?而不是配置中的21012端口?
    1. langchain-chatchat中默认的openai 端口是20000,这个配置会作为api_base传递给ChatOpenAI类,最后组装langchain的LLMChain,发起大模型请求。
    2. 目前发现请求大模型的地址
http://127.0.0.1:20000/v1/chat/completions# 这个地址是初始化openai的时候,使用fastchat提供的fastapi路由,
# 文件在fastchat.serve.openai_api_server# qianwen 大模型实际部署的端口是21012,对不上,是否会是这个问题呢?
  1. 参考fastchat的文档:https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md
    1. http://127.0.0.1:20000是fastchat启动的restful的api地址,同时也要启动模型工作线程 fastchat.serve.model_worker
    2. 测试fastchat中是否可以调用本地的qianwen-14B的模型
# 查看当前启动的模型
curl "http://127.0.0.1:20000/v1/models"# 返回了qianwen-14B
{"object":"list","data":[
{"id":"Qwen1.5-14B-Chat","object":"model","created":1715421368,
"owned_by":"fastchat","root":"Qwen1.5-14B-Chat","parent":null,
"permission":[{"id":"modelperm-4dMH93oGAz7eFLMoAdKegr","object":"model_permission","created":1715421368,"allow_create_engine":false,"allow_sampling":true,"allow_logprobs":true,"allow_search_indices":true,"allow_view":true,"allow_fine_tuning":false,"organization":"*","group":null,"is_blocking":false}
]}]}# 查看启动的模型
curl -X POST "http://127.0.0.1:20001/list_models"
{"models":["Qwen1.5-14B-Chat"]}# 和模型交流
curl http://localhost:20000/v1/chat/completions \-H "Content-Type: application/json" \-d '{"model": "Qwen1.5-14B-Chat","messages": [{"role": "user", "content": "Hello! What is your name?"}]}'# 模型回答{"id":"chatcmpl-3ySLAgNaGJUqXcbu39cAmf","object":"chat.completion","created":1715421533,"model":"Qwen1.5-14B-Chat","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! My name is Assistant. I'm here to help you with any questions or tasks you need assistance with. How can I help you today?"},"finish_reason":"stop"}],"usage":{"prompt_tokens":25,"total_tokens":55,"completion_tokens":30}}
  3. 结论是访问20000端口请求大模型没问题,fastchat可以找到启动的大模型实例。20000端口是fastchat的controller地址,实际的大模型由model_worker启动。
  1. 错误堆栈追踪
    1. 追踪堆栈发现是调用langchain的langchain_core/language_models/chat_models.py,调用了_agenerate_with_cache函数,但并没有命中cache,走了617行
    2. 命中langchain_community/chat_models/openai.py的_agenerate函数
    3. 最终报错是在langchain_community/chat_models/openai.py的_astream函数,代码如下:
        async for chunk in await acompletion_with_retry(self, messages=message_dicts, run_manager=run_manager, **params):if not isinstance(chunk, dict):chunk = chunk.dict()if len(chunk["choices"]) == 0:continuechoice = chunk["choices"][0]# 错误代码
if len(chunk["choices"]) == 0:
  1. 拿到知识库返回的context,手动调用大模型查询试试?
    1. 知识库返回5w多个字符,不符合预期。
    2. 从返回内容上来看,充斥着大量的"##############" ,不符合我们的预期。使用MarkdownHeaderTextSplitter只是想保留标题,按照标题来分块,而不是污染原来的文档。
  2. 更改markdownHeaderTextSplitter的配置
    1. 默认的配置如下image.png
    2. 更改为只保留head1和head2看看
      1. 结果依然不行,文档含有大量的"##############",且分块只有2个。如果是textSplitter的话,分块有165个,比较正常。
      2. 猜测是markdownHeaderTextSplitter适合标准格式的markdown文件,我们这里把pdf转换成markdown并不标准,格式不统一。此时通过markdownHeaderTextSplitter分词识别到的head1和head2比较少,导致分块只有2个。
      3. langchain-chatchat中分词配置中的chunkSize和overlapSize对markdownHeaderTextSplitter不生效。如果markdown文件不标准的话,可能一个块有几w个字,会影响大模型的输出。
    3. 更改markdownHeaderTextSplitter的配置到head6
      1. 知识库分块明显多了,从2个块变成了35个块。
      2. 部分问答可以出来,部分问答依然返回错误

测试更换ChineseRecursiveTextSplitter分词器
  1. 可以正常被搜索到,返回1216个字符
  2. 返回的内容依然是带有markdown格式的内容,保留了表格的关系
  3. 知识库查看数据可以正常分块,一共165个块。image.png

结论

pdf转markdown之后生成的markdown格式不够标准,这种情况下使用markdownHeadertextSplitter进行分词的效果不符合预期。
且因为配置文件中的chunkSize和overlapSize对markdownHeaderTextSplitter不生效,导致分块结果很差,一个块几万个字。
大模型是拿到知识库查询的结果,作为"context"传过去的,几万个字传给大模型,直接导致大模型推理时间过久且没有返回结果。

关于markdownHeaderTextSplitter的探索

标准的markdown测试集

# 查特查特团队
荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军。
## 报道简介
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。
## 获奖队员简介
+ 小明,A大学+ 负责Agent旅游助手的开发、场地协调以及团队住宿和行程的安排+ 在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。
# 你好啊
## 世界你好
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
## 中国你好
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
# 中午吃什么
## 世纪难题
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
## 为什么选择吃什么这么难
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
## 现在的年轻人到底需要什么?
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
# 早睡早起
## 为什么晚睡
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。
## 晚睡的危害是什么
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。

Langchain区分head1和head2

image.png

Langchain区分head1,head2,head3

image.png
可以看到文档划分还是符合预期的。Langchain官方给出的测试demo没问题。

Langchain-Chatchat测试结果

更改markdown文件及分词器配置

  1. markdown文件包含一级,二级,三级标题
  2. 分词器只包含head1和head2

测试结果

  1. 依然只有一个文档
  2. 删除了md的分割标识符
  3. 保留了标题和内容的关系
  4. 没有保留标题的meta信息,不符合预期。
查特查特团队  
荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军。  
报道简介  
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。  
获奖队员简介  
小明,A大学  
负责Agent旅游助手的开发、场地协调以及团队住宿和行程的安排  
在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。  
你好啊  
世界你好  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
中国你好  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
杭州你好啊  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
中午吃什么  
世纪难题  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
为什么选择吃什么这么难  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。    
年轻人要什么?  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
早睡早起  
为什么晚睡  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。  
为什么不早睡  
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。

分析Langchain-Chatchat的markdown文件加载

  1. 测试发现langchain-chatchat加载markdown文件使用的是langchain的markdown document loader
  2. 测试结果如下image.png
  3. 也就是document loader的结果文件是没有markdown标识的,因此会导致进行markdownHeaderTextSplitter的时候,无法正确的按照标题来分割数据。
  4. document loader加上mode=“elements” 参数,发现可以区分标题了image.png
  5. 测试markdownHeaderTextSplitter的效果
    1. 如果加上mode=“elements” 参数的话,markdown_splitter.split_text(markdown_document[0].page_content)的返回image.png
    2. 如果不加 mode=“elements” 参数的话,结果是一整块image.png
    3. 添加mode="elements"并且使用循环去进行split_text :
      1. image.png
      2. 这个结果也不是符合预期的,只有文档内容page_content,没有meta信息,也没有标题信息。

为什么Langchain-Chatchat会丢失标题

正如这篇文章所说: https://community.deeplearning.ai/t/loading-markdown-from-file-for-splitting/575875 langChain 中的 Markdown 加载器(UnstructedMarkdownLoader)删除了示例中分割文本所需的 Markdown 字符(例如:#、##、###)。所以按照标题分块是行不通的。

  1. 但是可以使用TextLoader来原样加载markdown文件,如下:image.png
  2. 结合markdownHeaderTextSplitter
    1. image.png
    2. 成功记录了标题信息,分块很成功!

后记

开源项目开箱即用是好事,但是直接拿来做产品还是欠佳的,怪不得大家最终都会走到自定义分词器的步骤,业务的需求千变万化,代码都掌握在自己手里才能以不变应万变啊。
就这样吧,还是挺有意思的。

end

相关文章:

Langchain-Chatchat的markdownHeaderTextSplitter使用

文章目录 背景排查步骤官方issue排查测试正常对话测试官方默认知识库Debug排查vscode配置launch.json命令行自动启动condadebug知识库搜索测试更换ChineseRecursiveTextSplitter分词器 结论 关于markdownHeaderTextSplitter的探索标准的markdown测试集Langchain区分head1和head…...

掩码生成蒸馏——知识蒸馏

摘要 https://arxiv.org/pdf/2205.01529 知识蒸馏已成功应用于各种任务。当前的蒸馏算法通常通过模仿教师的输出来提高学生的性能。本文表明,教师还可以通过指导学生的特征恢复来提高学生的表示能力。从这一观点出发,我们提出了掩码生成蒸馏&#xff08…...

【C#实战】Newtonsoft.Json基类子类解析

情景再现 假设你有如下类&#xff1a; public class Item {public int Id;public string Name; }public class Weapon: Item {public int CurrentAmmo; }public class Inventory {public List<Item> Items; } 其中你序列化的是Inventory类&#xff0c;Items列表里混杂着…...

表达式求值的相关语法知识(C语言)

目录 整型提升 整型提升的意义 整型提升规则 整型提升实例 算术转换 赋值转换 操作符的属性 C语言的语法并不能保证表达式的执行路径唯一&#xff01;&#xff01;&#xff01; 问题表达式 整型提升 C的整型算术运算总是至少以缺省整型类型的精度来进行的。为了获得这…...

开发中遇到Electron自定义窗口的问题

开发中遇到Electron自定义窗口的问题 使用VUE3 Electron 开发一个音乐软件&#xff0c;自定义导航栏的放大、缩小和关闭。 其中使用ipcRenderer进行联系Electron&#xff0c;进行放大、缩小和关闭操作。 遇到问题 遇到__dirname is not defined in ES module scope //在V…...

c# sqlite使用

安装包 使用 const string strconn "Data Sourcedata.db"; using (SQLiteConnection conn new SQLiteConnection(strconn)) {conn.Open();var cmd conn.CreateCommand();cmd.CommandText "select 1";var obj cmd.ExecuteScalar();MessageBox.Show(ob…...

39、Flink 的窗口剔除器(Evictors)详解

Evictors Flink 的窗口模型允许在 WindowAssigner 和 Trigger 之外指定可选的 Evictor&#xff0c;通过 evictor(...) 方法传入 Evictor。 Evictor 可以在 trigger 触发后、调用窗口函数之前或之后从窗口中删除元素&#xff0c; Evictor 接口提供了两个方法实现此功能&#x…...

Flutter 中的 DefaultTabController 小部件:全面指南

Flutter 中的 DefaultTabController 小部件&#xff1a;全面指南 在Flutter中&#xff0c;DefaultTabController是一个用于管理Tab控制器的widget&#xff0c;它允许你控制Tab视图的初始索引和动态更新。这个组件在实现具有可滚动标签页的界面时非常有用&#xff0c;例如在设置…...

C++技能进阶指南——多态语法剖析

前言&#xff1a;多态是面向对象的三大特性之一。顾名思义&#xff0c; 多态就是多种状态。 那么是什么的多种状态呢&#xff1f; 这里的可能有很多。比如我们去买火车票&#xff0c; 有普通票&#xff0c; 学生票&#xff1b; 又比如我们去旅游&#xff0c; 有儿童票&#xff…...

Linux内存管理--系列文章肆

一、引子 上篇文章介绍了目标文件&#xff0c;也就是讲到编译过程中的汇编这个阶段。本篇要讲目标文件怎么变成一个可执行文件的&#xff0c;介绍编译过程中的链接。 链接主要分为两种&#xff0c;静态链接和动态链接。它们本质上的区别&#xff0c;是在程序的编译和运行过程中…...

kali下载zsteg和stegpy

1.kali下载zsteg 从 GitHub 上克隆zsteg到kali git clone https://github.com/zed-0xff/zsteg 切换目录 cd zsteg 用于安装名为 zsteg 的 Ruby Gem 包 gem install zsteg 2.kali下载stegpy 下载网站内的stegpy-master压缩包GitCode - 开发者的代码家园 并拉到kali中 切换到s…...

前端面试题日常练-day34 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末。 1. jQuery中&#xff0c;以下哪个选项用于筛选出第一个匹配的元素&#xff1f; a) first() b) get(0) c) eq(0) d) find(":first") 2. 在jQuery中&#xff0c;以下哪个选项用于在元素上…...

网站笔记:huggingface model memory calculator

Model Memory Utility - a Hugging Face Space by hf-accelerate 这个工具可以计算在 Hugging Face Hub上托管的大型模型训练和执行推理时所需的vRAM内存量。模型所需的最低推荐vRAM内存量表示为“最大层”的大小&#xff0c;模型的训练大约是其大小的4倍&#xff08;针对Adam…...

SpringBoot2.0.x旧版集成Swagger UI报错Unable to infer base url...解决办法

一、问题描述 1.1项目背景 SpringBoot2.0.9的旧版项目维护开发&#xff0c;集成Swagger-ui2.9.2无法访问的问题。不用想啊&#xff0c;这种老项目是各种过滤器拦截器的配置&#xff0c;访问不到&#xff0c;肯定是它们在作妖。懂得都懂啊&#xff0c;这里交给大家一个排错的办…...

软件项目详细设计说明书实际项目参考(word原件下载及全套软件资料包)

系统详细设计说明书案例&#xff08;直接套用&#xff09; 1.系统总体设计 2.性能设计 3.系统功能模块详细设计 4.数据库设计 5.接口设计 6.系统出错处理设计 7.系统处理规定 软件开发全文档下载&#xff08;下面链接或者本文末个人名片直接获取)&#xff1a;软件开发全套资料-…...

电脑文件qt5core.dll如何修复?如何快速的解决qt5core.dll丢失问题

软件应用程序依赖于各种复杂的文件系统以保证其顺畅运行。这些文件中&#xff0c;动态链接库&#xff08;Dynamic Link Library&#xff0c;简称DLL&#xff09;是Windows操作系统中实现多种功能的关键组件之一。然而&#xff0c;DLL文件出现问题是Windows用户可能面临的常见挑…...

USART串口通信(stm32)

一、串口通信 通信的目的&#xff1a;将一个设备的数据传送到另一个设备&#xff0c;扩展硬件系统 通信协议&#xff1a;制定通信的规则&#xff0c;通信双方按照协议规则进行数据收发 STM32F103C8T6 USART资源&#xff1a; USART1、 USART2、 USART3 自带波特率发生器&…...

快速分析变量间关系(Boruta+SHAP+RCS)的 APP(streamlit)

快速分析变量间关系&#xff08;BorutaSHAPRCS&#xff09;的 APP&#xff08;streamlit&#xff09; 以下情况下&#xff0c;你需要这个快速分析的APP: 正式分析之前的预分析&#xff0c;有助于确定分析的方向和重点变量&#xff1b;收集变量过程中&#xff0c;监测收集的变量…...

解决docker中container运行闪退终止的问题

在运行bindmount-test时&#xff0c;点击完运行按钮后闪退结束运行。 第一步查看log日志&#xff1a; 2024-05-18 23:46:18 Error: Cannot find module /app/nodemon 2024-05-18 23:46:18 at Function.Module._resolveFilename (internal/modules/cjs/loader.js:668:15) …...

Redis 性能管理

一、Redis 性能管理 #查看Redis内存使用 172.168.1.11:6379> info memory 1. 内存碎片率 操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。内存值 used_memory_rss 表示该进程所占物理内存的大小&#xff0c;即为操作系统分配给…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...