当前位置: 首页 > news >正文

定积分求解过程是否变限问题 以及当换元时注意事项

目录

定积分求解过程是否变限问题 

文字理解:

 实例理解:

易错点和易混点:

1:定积分中的换元指什么?

2: 不定积分中第一类换元法和第二类换元法的本质和区别

3: df(x)   ---->   df(x)这个过程对大家产生困扰

换元时注意事项:

1:换元必换限,同时要将 dx = f(t)dt 也更换

2:换元要判断新元要保证连续可导:

3:积分区间上单调的替换函数是必要的

4:偶次方根下开平方,要加绝对值

5:牛顿莱布尼茨公式只适用于定积分,当定积分区间内有瑕点(该点的函数值为无穷)


定积分求解过程是否变限问题 

文字理解:

       定积分换元有一个口诀:换字必换限(所以不换字就不换限)。

       理解:通过判断是否 引入一个新的变量替换原来的变量 来确定是否更换 积分限

        白话理解:你在积分中,如果一直用字母t,那么那个积分限当然还是t等于多少的积分限。但是一旦你在积分中,不要原来的字母t了,换成一个新的字母x,那么积分限当然要换成x等于多少了?。这就叫做,这就叫做换字必换限。不换字就不换限。明白了没有?

 实例理解:

来源:​​​​​​(1 封私信) 闲敲棋子落灯hua - 知乎 (zhihu.com)

        (1 封私信) 龚漫奇 - 知乎 (zhihu.com)

易错点和易混点:

1:定积分中的换元指什么?

        定积分中说的"换元"指的是引入新变量替换原变量

2: 不定积分中第一类换元法和第二类换元法的本质和区别

第一类换元法(凑微分):

第二类换元法:

通过这两个概念的引入,我们能清晰的认识到,第二类换元法的概念 与 定积分的换元的概念 是一 一对应的,故第二类换元法需要更换积分上下限。而第一类换元法的概念 与 定积分的换元的概念 并不是相同概念,故凑微分并不用更换积分上下限。

3: df(x)   ---->   df(x) 这个过程使大家产生困扰

定积分公式    \int_{a}^{b}u(x)df(x)

        当凑微分时会产生这样的过程  df(x)   ---->   df(x)  容易误导大家,让大家误以为是更换了积分变量,其实如果单单只是df(x)   ---->   dg(x) ,而u(x)对应的函数并未更换变量,此时并不表示更换积分变量。注 dx 也是 df(x)中的一种情况 当f(x) =x 时。

        若:定积分公式 \int_{a}^{b}u(x)df(x)  中 u(x)df(x) 经过一系类变化转换为  v(x)dg(x) 这个过程仍然并没有引入新的变量,变量仍是"x",不用更改积分限。刚好凑微分符合该条件,故凑微分不用修改积分上下限。

        若:定积分公式  \int_{a}^{b}u(x)df(x)  中u(x)df(x)经过一系列变换转换为v(t)dg(t)此时要根据变换过程及时更换积分上下限。第二类换元需要修改上下限。

注:一定要分清 凑微分法 和 第二类换元法 和 定积分的换元 在概念上的区别。

换元时注意事项:

1:换元必换限,同时要将 dx = f(t)dt 也更换

2:换元要判断新元要保证连续可导:

        例如原积分区间(-1,1),换元函数是 x = 1/t ,很明显当x = 0时 t是无穷,所有新元函数在0处为无穷间断点,不连续也不可导,故此时不能换元。

3:积分区间上单调的替换函数是必要的

        进行定积分的变量替换时,选择在积分区间上单调的替换函数是非常重要的。这可以确保替换过程中的一一对应性,避免积分上下限混淆,并简化积分计算过程。在实际操作中,务必检查替换函数的单调性和可逆性,以确保积分计算的正确性

4:偶次方根下开平方,要加绝对值

        换元后,很多情况下都是会出现平方项,特别是三角换元,当遇见偶次根号下开方一定要小心

5:牛顿莱布尼茨公式只适用于定积分,当定积分区间内有瑕点(该点的函数值为无穷)

        这个很少见,一般让你求定积分都是已经帮你筛选过瑕点区间不用很担心。除非题目问你:该积分是否能用牛顿莱布尼茨求。

相关文章:

定积分求解过程是否变限问题 以及当换元时注意事项

目录 定积分求解过程是否变限问题 文字理解: 实例理解: 易错点和易混点: 1:定积分中的换元指什么? 2: 不定积分中第一类换元法和第二类换元法的本质和区别 3: df(x) ----> df(x)这…...

保研机试算法训练个人记录笔记(七)

输入格式: 在第1 行给出不超过10^5 的正整数N, 即参赛}人数。随后N 行,每行给出一位参赛者的 信息和成绩,包括其所代表的学校的编号(从1 开始连续编号)及其比赛成绩(百分制)&#xf…...

【MySQL精通之路】SQL优化(1)-查询优化(23)-避免全表扫描

当MySQL使用全表扫描来解析查询时,EXPLAIN的输出在type列中显示ALL。 这种情况通常发生在以下情况下: 该表非常小,因此执行全表扫描比查找关键字更快。这对于少于10行且行长较短的表来说很常见。 对于索引列,ON或WHERE子句中没有…...

【Linux】写时拷贝技术COW (copy-on-write)

文章目录 Linux写时拷贝技术(copy-on-write)进程的概念进程的定义进程和程序的区别PCB的内部构成 程序是如何被加载变成进程的?写时复制(Copy-On-Write, COW)写时复制机制的原理写时拷贝的场景 fork与COWvfork与fork Linux写时拷贝技术(copy-…...

用python使用主成分分析数据

import pandas as pd #导入处理二维表格的库 import numpy as np #导入数值计算的库 from sklearn.preprocessing import StandardScaler #导入数据标准化模块 import matplotlib.pyplot as plt #导入画图的包 from sklearn.decomposition import PCA #导入主成…...

用WPS将多张图片生成一个pdf文档,注意参数设置

目录 1 新建一个docx格式的文档 2 向文档中插入图片 3 设置页边距 4 设置图片大小 5 导出为pdf格式 需要把十几张图片合并为一个pdf文件,本以为很简单,迅速从网上找到两个号称免费的在线工具,结果浪费了好几分钟时间,发现需要…...

virtual box ubuntu20 全屏展示

virtual box 虚拟机 ubuntu20 系统 全屏展示 ubuntu20.04 视图-自动调整窗口大小 视图-自动调整显示尺寸 系统黑屏解决 ##设备-安装增强功能 ##进入终端 ##终端打不开,解决方案-传送门ubuntu Open in Terminal打不开终端解决方案-CSDN博客 ##点击cd盘按钮进入文…...

react中的数据驱动视图,useState()的使用

前端开发如今有一个很重要的思想就是数据驱动视图,数据发生变化使ui发生变化,比如一个变量count,为0显示三个按钮,为1显示一个按钮,为2显示两个按钮。这就是一个简单的数据驱动视图。 import { useState } from reactf…...

金融数据库,实时行情,股票财务数据在线查询

jvQuant在线SQL 文档(current)接入 测试 查询 #股票代码股票简称最新价(元)2024-05-21股东总户数(户)截至2024-05-21上市板块是否ST股票区间涨跌幅(%)2024-05-15-2024-05-21市盈率(TTM)(倍)2024-05-21营业收入(元)截至2024-03-31总市值(元)2024-05-21量比2024-05-21利润率(%…...

开源模型应用落地-LangSmith试炼-入门初体验-数据集评估(三)

一、前言 LangSmith是一个用于构建生产级 LLM 应用程序的平台,它提供了调试、测试、评估和监控基于任何 LLM 框架构建的链和智能代理的功能,并能与LangChain无缝集成。通过使用LangSmith帮助开发者深入了解模型在不同场景下的表现,让开发者能…...

设计模式 15 Decorator Pattern 装饰器模式

设计模式 15 Decorator Pattern 装饰器模式 1.定义 Decorator Pattern 装饰器模式是一种结构型设计模式,它允许在运行时给对象添加新的行为或职责,而无需修改对象的源代码。这种模式通过创建一个包装对象,也称为装饰器,来包裹原…...

cuda11.8安装torch2.0.1

pip install torch2.0.1 torchvision0.15.2 torchaudio2.0.2 --index-url https://download.pytorch.org/whl/cu118...

新手困 ViewModel与Activting的databinding2个对象 区别

在Android开发中,ViewModel与Activity的Binding并不是同一个概念,它们分别指的是不同的功能和用途。 ViewModel: ViewModel是一个为UI界面提供数据的类,它负责管理Activity或Fragment的数据。ViewModel类持有数据的引用,即使配置…...

Cocos Creator 声音播放与管理详解

Cocos Creator 是一款非常流行的游戏开发引擎,它提供了丰富的功能和工具,让开发者可以轻松构建出高质量的游戏。在游戏开发中,声音是一个非常重要的元素,可以为游戏增添氛围和趣味性。在本文中,我们将详细介绍Cocos Cr…...

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 5月26日,星期日

每天一分钟,知晓天下事! 2024年5月26日 星期日 农历四月十九 1、 医保局:支持将符合条件的村卫生室纳入医保定点,方便农村居民就医。 2、 网传养老金储备严重不足?央视辟谣:这笔钱二十多年来从未动用过&a…...

IDEA快速生成类注释和方法注释的方法

1.生成类、接口、枚举、注解等文件的注释,不仅仅是class 2.生成方法注释的 可在方法上方空行输入/** 按enter键快速生成。生成的样式如下: PS:生成的返回值带一堆英文文字说明,感觉没必要 如果想生成比较全面的方法注释,如作者&…...

[集群聊天服务器]----(七)业务模块之一对一聊天、添加好友函数、好友类以及离线消息类

接着[集群聊天服务器]----(六)业务模块之用户注册、登录、退出以及客户端异常退出函数中对于业务模块的用户注册、登录、退出以及客户端异常退出函数的剖析,现在我们对点对点聊天以及添加好友的实现进行剖析。 点对点聊天 当客户端输入msgidONE_CHAT_MSG时&#x…...

java中使用jedis连接redis

4.java中使用jedis连接redis...

【多线程开发 2】从代码到实战TransmittableThreadLocal

【多线程开发 2】从代码到实战TransmittableThreadLocal 本文将从以下几个点讲解TransmittableThreadLocal(为了方便写以下简称ttl): 前身 是什么? 可以用来做什么? 源码原理 实战 前身 ThreadLocal 要了解ttl就要先了解Java自带的类…...

【车载以太网测试从入门到精通】——SOME/IP协议测试

系列文章目录 【车载以太网测试从入门到精通】系列文章目录汇总 文章目录 系列文章目录前言一、SOME/IP时间参数1.INITIAL_DELAY时间2.REPETITIONS_MAX次数3.REPETITIONS_BASE_DELAY时间4.CYCLIC_OFFER_DELAY时间5.TIME_TO_LIVE时间6.SUBSCRIBE_RETRY_DELAY时间二、SOME/IP服务…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

go 里面的指针

指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块&#xff0…...