当前位置: 首页 > news >正文

用于时间序列概率预测的蒙特卡洛模拟

大家好,蒙特卡洛模拟是一种广泛应用于各个领域的计算技术,它通过从概率分布中随机抽取大量样本,并对结果进行统计分析,从而模拟复杂系统的行为。这种技术具有很强的适用性,在金融建模、工程设计、物理模拟、运筹优化以及风险管理等领域都有广泛的应用。

蒙特卡洛模拟这个名称源自于摩纳哥王国的蒙特卡洛城市,这里曾经是世界著名的赌博天堂。在20世纪40年代,著名科学家乌拉姆和冯·诺依曼参与了曼哈顿计划,他们需要解决与核反应堆中子行为相关的复杂数学问题。他们受到了赌场中掷骰子的启发,设想用随机数来模拟中子在反应堆中的扩散过程,并将这种基于随机抽样的计算方法命名为"蒙特卡洛模拟"(Monte Carlo simulation)。

蒙特卡洛模拟的核心思想是通过大量重复随机试验,从而近似求解分析解难以获得的复杂问题。它克服了传统数值计算方法的局限性,能够处理非线性、高维、随机等复杂情况。随着计算机性能的飞速发展,蒙特卡洛模拟的应用范围也在不断扩展。

在金融领域,蒙特卡洛模拟被广泛用于定价衍生品、管理投资组合风险、预测市场波动等。在工程设计中,它可以模拟材料力学性能、流体动力学等复杂物理过程。在物理学研究中,从粒子物理到天体物理,都可以借助蒙特卡洛模拟进行探索。此外,蒙特卡洛模拟还在机器学习、计算生物学、运筹优化等领域发挥着重要作用。

蒙特卡洛模拟的过程基本上是这样的:首先需要定义要模拟的系统或过程,包括方程和参数;其次根据拟合的概率分布生成随机样本;进而针对每一组随机样本,运行模型模拟系统的行为;最后分析结果以了解系统行为。

本文将介绍使用它来模拟未来证券价格的两种分布:高斯分布和学生 t 分布。这两种分布通常被量化分析人员用于证券市场数据。

在此加载苹果公司从2020年到2024年每日证券价格的数据:

import yfinance as yf
orig = yf.download(["AAPL"], start="2020-01-01", end="2024-12-31")
orig = orig[('Adj Close')]
orig.tail()
[*********************100%%**********************]  1 of 1 completed
Date
2024-03-08    170.729996
2024-03-11    172.750000
2024-03-12    173.229996
2024-03-13    171.130005
2024-03-14    173.000000
Name: Adj Close, dtype: float64

可以通过价格序列来计算简单的日收益率,并将其呈现为柱状图。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
returns = orig.pct_change()
last_price = orig[-1]
returns.hist(bins=100)

 苹果证券日收益柱状图

1.标准正态分布拟合收益率

证券的历史波动率通常是通过计算每日收益率的标准差来进行,假设未来的波动率与历史波动率相似。而直方图则呈现了以0.0为中心的正态分布的形状。为简单起见,将该分布假定为均值为0,标准差为0的高斯分布。接下来计算出标准差(也称为日波动率),预计明天的日收益率将会是高斯分布中的一个随机值。

daily_volatility = returns.std()
rtn = np.random.normal(0, daily_volatility)

第二天的价格是今天的价格乘以 (1+return %):

price = last_price * (1  + rtn)

以上是证券价格和收益的基本财务公式。使用蒙特卡洛模拟预测明天的价格,可以随机抽取另一个收益率,从而推算后天的价格,可以得出未来 200 天可能的价格走势之一。当然,这只是一种可能的价格路径。重复这个过程得出另一条价格路径,重复过程 1,000 次,得出 1,000 条价格路径。

import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)num_simulations = 1000
num_days = 200
simulation_df = pd.DataFrame()
for x in range(num_simulations):count = 0    # The first price pointprice_series = []rtn = np.random.normal(0, daily_volatility)price = last_price * (1  + rtn)price_series.append(price)# Create each price pathfor g in range(num_days):rtn = np.random.normal(0, daily_volatility)price = price_series[g] * (1  + rtn)price_series.append(price)# Save all the possible price pathssimulation_df[x] = price_series
fig = plt.figure()
plt.plot(simulation_df)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

分析结果如下:价格起始于179.66美元,大部分价格路径相互交叠,模拟价格范围为100美元至500美元。

图片

使用高斯分布的蒙特卡洛模拟

假设我们想知道90%情况下(5%到95%)出现的"正常"价格范围,可以使用量化方法得到上限和下限,从而评估超出这些极端价格。

upper = simulation_df.quantile(.95, axis=1)
lower = simulation_df.quantile(.05, axis=1)
stock_range = pd.concat([upper, lower], axis=1)fig = plt.figure()
plt.plot(stock_range)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

使用高斯分布的 95 百分位数和 5 百分位数

2.学生t分布拟合收益率

证券价格回报偶尔会出现极端事件,位于分布两端。标准正态分布预计 95% 的收益率发生在两个标准差之内,5% 的收益率发生在两个标准差之外。如果极端事件发生的频率超过 5%,分布看起来就会 "变胖"。这就是统计学家所说的肥尾,定量分析人员通常使用学生 t 分布来模拟证券收益率。

学生 t 分布有三个参数:自由度参数、标度和位置。

  • 自由度:自由度参数表示用于估计群体参数的样本中独立观测值的数量。自由度越大,t 分布的形状越接近标准正态分布。在 t 分布中,自由度范围是大于 0 的任何正实数。

  • 标度:标度参数代表分布的扩散性或变异性,通常是采样群体的标准差。

  • 位置:位置参数表示分布的位置或中心,即采样群体的平均值。当自由度较小时,t 分布的尾部较重,类似于胖尾分布。

用学生 t 分布来拟合实际证券收益率:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import treturns = orig.pct_change()# Number of samples per simulation
num_samples = 100# distribution fitting
returns = returns[1::] # Drop the first element, which is "NA"
params = t.fit(returns[1::]) # fit with a student-t# Generate random numbers from Student's t-distribution
results = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1000)
# Generate random numbers from Student's t-distribution
results = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1000)
print('degree of freedom = ', params[0])
print('loc = ', params[1])
print('scale = ', params[2])

参数如下:

  • 自由度 = 3.735

  • 位置 = 0.001

  • 标度 = 0.014

使用这些参数来预测 Student-t 分布,然后用 Student-t 分布绘制实际证券收益分布图。

returns.hist(bins=100,density=True, alpha=0.6, color='b', label='Actual returns distribution')# Plot histogram of results
plt.hist(results, bins=100, density=True, alpha=0.6, color='g', label='Simulated Student/t distribution')plt.xlabel('Value')
plt.ylabel('Density')
plt.title('Actual returns vs. Projections with a Student\'s t-distribution')
plt.legend(loc='center left')
plt.grid(True)
plt.show()

实际回报与预测相当接近:

图片

实际收益与学生 t 分布预测对比

与之前一样,模拟未来 200 天的价格走势。

import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)num_simulations = 1000
num_days = 200
simulation_student_t = pd.DataFrame()
for x in range(num_simulations):count = 0# The first price pointprice_series = []rtn = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1)[0]price = last_price * (1  + rtn)price_series.append(price)# Create each price pathfor g in range(num_days):rtn = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1)[0]price = price_series[g] * (1  + rtn)price_series.append(price)# Save all the possible price pathssimulation_student_t[x] = price_series
fig = plt.figure()
plt.plot(simulation_student_t)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

学生 t 分布的蒙特卡洛模拟

可以绘制出学生 t 的蒙特卡洛模拟置信区间上下限(95%、5%):

upper = simulation_student_t.quantile(.95, axis=1)
lower = simulation_student_t.quantile(.05, axis=1)
stock_range = pd.concat([upper, lower], axis=1)fig = plt.figure()
plt.plot(stock_range)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.title('The upper 95% and lower 5%')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

使用学生 t 分布的 95 百分位数和 5 百分位数

相关文章:

用于时间序列概率预测的蒙特卡洛模拟

大家好,蒙特卡洛模拟是一种广泛应用于各个领域的计算技术,它通过从概率分布中随机抽取大量样本,并对结果进行统计分析,从而模拟复杂系统的行为。这种技术具有很强的适用性,在金融建模、工程设计、物理模拟、运筹优化以…...

VScode解决报错“Remote-SSH XHR failed无法访问远程服务器“的方案

VScode解决报错"Remote-SSH XHR failed无法访问远程服务器"的方案 $ ls ~/.vscode-server/bin 2ccd690cbff1569e4a83d7c43d45101f817401dc稳定版下载链接:https://update.code.visualstudio.com/commit:COMMIT_ID/server-linux-x64/stable 内测版下载链接…...

Python高级进阶--dict字典

dict字典⭐⭐ 1. 字典简介 dictionary(字典) 是 除列表以外 Python 之中 最灵活 的数据类型,类型为dict 字典同样可以用来存储多个数据字典使用键值对存储数据 2. 字典的定义 字典用{}定义键值对之间使用,分隔键和值之间使用:分隔 d {中…...

记忆力和人才测评,如何提升记忆力?

什么是记忆力? 如何通俗意义上的记忆力?我们可以把人的经历、经验理解成为一部纪录片,那么已经过去发生的事情,就是影片之前的情节,对于这些信息,在脑海里,人们会将其进行处理和组合&#xff…...

数据仓库建模

目录 数仓建模 为什么要对数据仓库进行分层 主题 主题的概念 维度建模: 模型的选择: 星形模式 雪花模型 星座模式 拉链表 维度表和事实表: 维度表 事实表 事实表设计规则 退化维度 事务事实表、周期快照事实表、累积快照事实…...

力扣:1738. 找出第 K 大的异或坐标值

1738. 找出第 K 大的异或坐标值 给你一个二维矩阵 matrix 和一个整数 k &#xff0c;矩阵大小为 m x n 由非负整数组成。 矩阵中坐标 (a, b) 的 值 可由对所有满足 0 < i < a < m 且 0 < j < b < n 的元素 matrix[i][j]&#xff08;下标从 0 开始计数&…...

Keras深度学习框架第二十讲:使用KerasCV中的Stable Diffusion进行高性能图像生成

1、绪论 1.1 概念 为便于后文讨论&#xff0c;首先进行相关概念的陈述。 Stable Diffusion&#xff1a;Stable Diffusion 是一个在图像生成领域广泛使用的技术&#xff0c;尤其是用于文本到图像的转换。它基于扩散模型&#xff08;Diffusion Models&#xff09;&#xff0c;这…...

C/C++ vector详解

要想了解STL&#xff0c;就必须会看&#xff1a; cplusplus.comhttps://legacy.cplusplus.com/ 官方内容全都是英文的&#xff0c;可以参考&#xff1a; C/C初始识https://blog.csdn.net/2301_77087344/article/details/138596294?spm1001.2014.3001.5501 vector&#xff…...

使用libtorch加载YOLOv8生成的torchscript文件进行目标检测

在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集&#xff0c;使用 LabelMe 工具进行标注&#xff0c;然后使用 labelme2yolov8 脚本将json文件转换成YOLOv8支持的.txt文件&#xff0c;并自动生成YOLOv8支持的目录结构&#xff0c;包括melon.yaml文件&#xff0c;其内容…...

Oracle 并行和 session 数量的

这也就是为什么我们指定parallel为4&#xff0c;而实际并行度为8的原因。 insert create index&#xff0c;发现并行数都是加倍的 Indexes seem always created with parallel degree 1 during import as seen from a sqlfile. The sql file shows content like: CREATE INDE…...

Android 版本与 API level 以及 NDK 版本对应

采用 Android studio 开发 Android app 的时候&#xff0c;需要选择支持的最低 API Level 和使用的 NDK 版本&#xff0c;对应开发 app 的最低 SDK 版本&#xff1a; 在 app 的 build.gradle 文件里&#xff0c;对应于代码如下&#xff1a; 目前各版本的占有率情况如下&#xf…...

护网经验面试题目原版

文章目录 一、护网项目经验1.项目经验**Hvv的分组和流程**有没有遇到过有意思的逻辑漏洞&#xff1f;有没有自己开发过武器/工具&#xff1f;有做过代码审计吗&#xff1f;有0day吗有cve/cnvd吗&#xff1f;有src排名吗&#xff1f;有没有写过技战法有钓鱼经历吗&#xff1f;具…...

ipa 覆盖算法测试

相关文章 ipa 功能包测试 ipa 分区算法 ipa 分区算法总结&#xff0c;部分算法图解 ipa 覆盖算法分析&#xff08;一&#xff09; ipa 覆盖算法分析&#xff08;二&#xff09; 测试 网上找的地图&#xff1a; fig.1 测试地图 opencv fig.2 opencv 显示的覆盖路径 rviz fi…...

linuxwindows硬件信息midecod和wmic命令

1、命令dmidecode -t实例 1.1命令格式 dmidecode -t [类型代码或名称 ] 指令 1.2获取系统信息 [rootlala docker]# dmidecode -t 1 1.3获取主板信息&#xff1a; [rootshanghai docker]# dmidecode -t 2 1.4获取CPU ID dmidecode -t 4 | grep ID 1.5获取系统序列号 …...

03. SpringBoot 整合 Redis

文章目录 Jedis导入依赖测试连接Jedis 实现事务 SpringBoot 整合 RedisRedisTemplateSpringBoot 整合 Redis 测试RedisTemplate 序列化RedisUtils Jedis Jedis 是 Redis 官方推荐的 Java 连接工具。 导入依赖 </dependencies><dependency><groupId>redis.c…...

01-Linux【准备篇】

一、学Linux的作用&#xff1f; 1.Linux下开发(部署)软件项目 2.Linux运维 二、Linux的强与弱 1.薄弱 个人桌面领域的应用 此领域是传统Linux应用薄弱的环节&#xff0c;近些年随着Ubuntu、fedora等优秀桌面环境的兴起&#xff0c;Linux在个人桌面领域的占有率在慢慢提高…...

在IDEA中配置servlet(maven配置完成的基础下)

在IDEA中配置servlet&#xff08;maven配置完成的基础下&#xff09; 1.先新建一个项目 2.选择尾巴是webapp的&#xff0c;名称自定义 3.点击高级设置&#xff0c;修改组id 点击创建&#xff0c;等待jar包下载完成。在pom.xml中配置以下 <dependency><groupId>ja…...

pyqt6水平布局

效果预览 main_window.ui <?xml version"1.0" encoding"UTF-8"?> <ui version"4.0"><class>MainWindow</class><widget class"QMainWindow" name"MainWindow"><property name"geo…...

CLIP论文学习

学习来自B站bryanyzhu...

手把手教大家,怎么查看抖音小店的类目保证金?

大家好&#xff0c;我是喷火龙。 抖音小店的类目保证金也介绍过很多次了&#xff0c;不同的类目有不同的保证金&#xff0c;要想准确的知道自己想做的类目要交多少保证金的话&#xff0c;还是去官网查询比较可靠。 今天&#xff0c;就教大家怎么去查询自己想做的类目要交多少…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...