当前位置: 首页 > news >正文

基于长短期记忆网络 LSTM 的送餐时间预测

送餐时间预测

前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

对于送餐服务公司来说,预测订单的送达时间是一项极具挑战性的任务。像 Zomato 和 Swiggy 这样的食品外卖服务需要准确显示送达订单所需的时间,以保持对客户的透明度。这些公司使用机器学习算法,根据送餐员过去在相同距离上所花费的时间来预测送餐时间。因此,如果您想了解如何使用机器学习预测食品配送时间,本文就是为您准备的。本文将带你使用 Python 通过机器学习预测送餐时间。

目录

  • 1. 相关数据集
    • 1.1 导入必要库
    • 1.2 加载数据集
  • 2. 计算两个经纬度之间的距离
  • 3. 探索性分析
    • 3.1 送餐距离和送餐时间
    • 3.2 送餐时间与送餐员年龄
    • 3.3 送餐时间与送餐员评级
    • 3.4 食物类型与车辆类型
  • 4. 时间预测模型
    • 4.1 准备数据
    • 4.2 构建模型(LSTM)
    • 4.3 模型训练
    • 4.4 模型评估
  • 5. 总结

1. 相关数据集

要实时预测食品配送时间,我们需要计算餐厅与送餐地点之间的距离。在找到餐厅和送餐地点之间的距离后,我们需要找到送餐员过去在相同距离内送餐所用时间之间的关系。因此,为了完成这项任务,我们需要一个数据集,其中包含送餐员从餐厅到送餐地点的送餐时间数据。

这里提供的数据集是 Gaurav Malik 在 Kaggle 上提交的原始数据集的净化版本。
以下是数据集中的所有特征:🔗

  1. ID: 订单 ID 编号
  2. Delivery_person_ID: 送餐员的 ID 编号
  3. Delivery_person_Age: 送餐员的年龄
  4. Delivery_person_Ratings(送餐人员评分): 根据以往送餐情况对送餐员的评分
  5. Restaurant_latitude: 餐厅的纬度
  6. Restaurant_longitude: 餐厅的经度
  7. Delivery_location_latitude: 送餐地点的纬度
  8. Delivery_location_longitude: 送餐地点的经度
  9. Type_of_order: 顾客订购的餐食类型
  10. Type_of_vehicle:送餐员所乘坐车辆的类型
  11. Time_taken(min): 送餐员完成订单所需的时间

1.1 导入必要库

我将通过导入必要的 Python 库和数据集来开始送餐时间预测任务:

import numpy as np
import pandas as pd
import plotly.express as px#splitting data
from sklearn.model_selection import train_test_split# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTM

1.2 加载数据集

①使用 pandas 函数 .read_csv() 加载数据集

data = pd.read_csv("deliverytime.txt")
print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  
0                    75.912471        Snack      motorcycle                24  
1                    77.813237        Snack         scooter                33  
2                    77.688400       Drinks      motorcycle                26  
3                    77.026494       Buffet      motorcycle                21  
4                    80.289982        Snack         scooter                30  

接下来,让我们来看看每一列数据的具体信息
②使用 .info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况

data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45593 entries, 0 to 45592
Data columns (total 11 columns):#   Column                       Non-Null Count  Dtype  
---  ------                       --------------  -----  0   ID                           45593 non-null  object 1   Delivery_person_ID           45593 non-null  object 2   Delivery_person_Age          45593 non-null  int64  3   Delivery_person_Ratings      45593 non-null  float644   Restaurant_latitude          45593 non-null  float645   Restaurant_longitude         45593 non-null  float646   Delivery_location_latitude   45593 non-null  float647   Delivery_location_longitude  45593 non-null  float648   Type_of_order                45593 non-null  object 9   Type_of_vehicle              45593 non-null  object 10  Time_taken(min)              45593 non-null  int64  
dtypes: float64(5), int64(2), object(4)
memory usage: 3.8+ MB

③现在我们来看看这个数据集是否包含任何空值:

data.isnull().sum()
ID                             0
Delivery_person_ID             0
Delivery_person_Age            0
Delivery_person_Ratings        0
Restaurant_latitude            0
Restaurant_longitude           0
Delivery_location_latitude     0
Delivery_location_longitude    0
Type_of_order                  0
Type_of_vehicle                0
Time_taken(min)                0
dtype: int64

数据集没有任何空值。让我们继续!

2. 计算两个经纬度之间的距离

数据集没有任何特征可以显示餐厅和送餐地点之间的差异。我们只有餐厅和送餐地点的经纬度点。我们可以使用哈弗辛公式,根据两个地点的经纬度计算它们之间的距离。

下面是我们如何根据餐厅和外卖地点的经纬度,利用哈弗辛公式求出它们之间的距离:

# Set the earth's radius (in kilometers)
R = 6371# Convert degrees to radians
def deg_to_rad(degrees):return degrees * (np.pi/180)# Function to calculate the distance between two points using the haversine formula
def distcalculate(lat1, lon1, lat2, lon2):d_lat = deg_to_rad(lat2-lat1)d_lon = deg_to_rad(lon2-lon1)a = np.sin(d_lat/2)**2 + np.cos(deg_to_rad(lat1)) * np.cos(deg_to_rad(lat2)) * np.sin(d_lon/2)**2c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a))return R * c# Calculate the distance between each pair of points
data['distance'] = np.nanfor i in range(len(data)):data.loc[i, 'distance'] = distcalculate(data.loc[i, 'Restaurant_latitude'], data.loc[i, 'Restaurant_longitude'], data.loc[i, 'Delivery_location_latitude'], data.loc[i, 'Delivery_location_longitude'])

现在,我们已经计算出餐厅与送餐地点之间的距离。我们还在数据集中添加了一个新特征,即距离。让我们再次查看数据集:

print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  \
0                    75.912471        Snack      motorcycle                24   
1                    77.813237        Snack         scooter                33   
2                    77.688400       Drinks      motorcycle                26   
3                    77.026494       Buffet      motorcycle                21   
4                    80.289982        Snack         scooter                30   distance  
0   3.025149  
1  20.183530  
2   1.552758  
3   7.790401  
4   6.210138  

3. 探索性分析

3.1 送餐距离和送餐时间

现在,让我们探索数据,找出特征之间的关系。我先来看看送餐距离和送餐时间之间的关系:

figure = px.scatter(data_frame = data, x="distance",y="Time_taken(min)", size="Time_taken(min)", trendline="ols", title = "Relationship Between Distance and Time Taken")
figure.show()

特征关系
送餐时间与送餐距离之间存在一致的关系。也就是说,无论距离远近,大多数送餐员都能在 25-30 分钟内送达食物。

3.2 送餐时间与送餐员年龄

现在我们来看看送餐时间与送餐员年龄之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Age",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Age")
figure.show()

特征关系
送餐时间与送餐员的年龄呈线性关系。这意味着年轻的送餐员比年长的送餐员用时更短。

3.3 送餐时间与送餐员评级

现在让我们来看看送餐时间与送餐员评级之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Ratings",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Ratings")
figure.show()

特征关系
送餐时间与送餐员的评分之间存在反向线性关系。也就是说,与评分低的送餐员相比,评分高的送餐员送餐时间更短。

3.4 食物类型与车辆类型

现在我们来看看顾客订购的食物类型和送餐员使用的车辆类型是否会影响送餐时间:

fig = px.box(data, x="Type_of_vehicle",y="Time_taken(min)", color="Type_of_order")
fig.show()

特征描述
因此,送餐员所花费的时间并不会因为他们所驾驶的车辆和所运送的食品类型而有太大差异。

因此,根据我们的分析,对送餐时间影响最大的特征是:

  • 送餐员的年龄
  • 送餐员的评级
  • 餐厅与送餐地点之间的距离

4. 时间预测模型

4.1 准备数据

将数据拆分为训练集和测试集

#splitting data
from sklearn.model_selection import train_test_split
x = np.array(data[["Delivery_person_Age", "Delivery_person_Ratings", "distance"]])
y = np.array(data[["Time_taken(min)"]])
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.10, random_state=42)

4.2 构建模型(LSTM)

现在,让我们使用 LSTM 神经网络模型来训练一个机器学习模型,以完成送餐时间预测任务:

# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTMmodel = Sequential([Input(shape=(xtrain.shape[1], 1)),LSTM(128, return_sequences=True),LSTM(64, return_sequences=False),Dense(25),Dense(1)
])model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ lstm (LSTM)(None, 3, 128)66,560 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ lstm_1 (LSTM)(None, 64)49,408 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)(None, 25)1,625 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)(None, 1)26 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 117,619 (459.45 KB)Trainable params: 117,619 (459.45 KB)Non-trainable params: 0 (0.00 B)

4.3 模型训练

model.fit(xtrain, ytrain, batch_size=1, epochs=9)
Epoch 1/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 65s 2ms/step - loss: 78.0635
Epoch 2/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 65.2568
Epoch 3/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 61.7881
Epoch 4/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 60.5413
Epoch 5/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 60.2824
Epoch 6/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.3861
Epoch 7/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.8831
Epoch 8/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.0806
Epoch 9/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.7611

4.4 模型评估

现在,让我们通过输入来预测送餐时间,从而测试模型的性能:

print("Food Delivery Time Prediction")
a = int(input("Age of Delivery Partner: "))
b = float(input("Ratings of Previous Deliveries: "))
c = int(input("Total Distance: "))features = np.array([[a, b, c]])
print("Predicted Delivery Time in Minutes = ", model.predict(features))
Food Delivery Time Prediction
Age of Delivery Partner:  29
Ratings of Previous Deliveries:  2.9
Total Distance:  6
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 155ms/step
Predicted Delivery Time in Minutes =  [[35.726112]]

5. 总结

要实时预测食品配送时间,需要计算食品准备点与食品消费点之间的距离。在找到餐厅和送餐地点之间的距离后,您需要找到送餐员过去在相同距离内的送餐时间之间的关系。希望您喜欢这篇关于使用 Python 进行机器学习预测送餐时间的文章。

相关文章:

基于长短期记忆网络 LSTM 的送餐时间预测

前言 系列专栏:【深度学习&#xff1a;算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域&#xff0c;讨论了各种复杂的深度神经网络思想&#xff0c;如卷积神经网络、循环神经网络、生成对…...

K-means聚类算法详细介绍

目录 &#x1f349;简介 &#x1f348;K-means聚类模型详解 &#x1f348;K-means聚类的基本原理 &#x1f348;K-means聚类的算法步骤 &#x1f348;K-means聚类的优缺点 &#x1f34d;优点 &#x1f34d;缺点 &#x1f348;K-means聚类的应用场景 &#x1f348;K-mea…...

SAP FS00如何导出会计总账科目表

输入T-code : S_ALR_87012333 根据‘FS00’中找到的总账科目&#xff0c;进行筛选执行 点击左上角的列表菜单&#xff0c;选择‘电子表格’导出即可...

ROS参数服务器

一、介绍 参数服务器是用于存储和检索参数的分布式多机器人配置系统&#xff0c;它允许节点动态地获取参数值。 在ROS中&#xff0c;参数服务器是一种用于存储和检索参数的分布式多机器人配置系统。它允许节点动态地获取参数值&#xff0c;并提供了一种方便的方式来管理和共享配…...

QCC---DFU升级变更设备名和地址

QCC---DFU升级变更设备名和地址 这个很多人碰到这个疑问,升级了改不了设备名和地址 /******************************************************************************* Copyright (c) 2018 Qualcomm Technologies International, Ltd. FILE NAME sink_dfu_ps.c DESCRIPT…...

[力扣题解] 695. 岛屿的最大面积

题目&#xff1a;695. 岛屿的最大面积 思路 代码 深度优先搜索 // 深度搜索 class Solution { private:int area_max 0;int dir[4][2] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};void dfs(vector<vector<int>>& grid, vector<vector<bool>>& …...

AI模型发展路径探析:开源与闭源,何者更胜一筹?

AI模型发展路径探析&#xff1a;开源与闭源&#xff0c;何者更胜一筹&#xff1f; 在当今快速发展的人工智能领域&#xff0c;AI模型成为推动技术创新和应用落地的关键。而评价一个AI模型“好不好”“有没有发展”&#xff0c;往往会引向一个重要话题&#xff1a;开源与闭源这…...

concurrency 并行编程

Goroutine go语言的魅力所在&#xff0c;高并发。 线程是操作系统调度的一种执行路径&#xff0c;用于在处理器执行我们在函数中编写的代码。一个进程从一个线程开始&#xff0c;即主线程&#xff0c;当该线程终止时&#xff0c;进程终止。这是因为主线程是应用程序的原点。然后…...

JavaScript如何让一个按钮的点击事件在完成之前禁用

在JavaScript中&#xff0c;要禁用一个按钮的点击事件直到某个操作完成&#xff0c;你可以将其点击事件用匿名函数的方式书写。 你可以将其在点击函数内设置为null来禁用按钮。 <button id"butto_n">点击抽奖</button><script>butto_n.onclick bu…...

透视App投放效果,Xinstall助力精准分析,让每一分投入都物超所值!

在移动互联网时代&#xff0c;App的推广与投放成为了每一个开发者和广告主必须面对的问题。然而&#xff0c;如何精准地掌握投放效果&#xff0c;让每一分投入都物超所值&#xff0c;却是一个令人头疼的难题。今天&#xff0c;我们就来谈谈如何通过Xinstall这个专业的App全渠道…...

【Linux杂货铺】进程通信

目录 &#x1f308; 前言&#x1f308; &#x1f4c1; 通信概念 &#x1f4c1; 通信发展阶段 &#x1f4c1; 通信方式 &#x1f4c1; 管道&#xff08;匿名管道&#xff09; &#x1f4c2; 接口 ​编辑&#x1f4c2; 使用fork来共享通道 &#x1f4c2; 管道读写规则 &…...

常用API(正则表达式、爬取、捕获分组和非捕获分组 )

1、正则表达式 练习——先爽一下正则表达式 正则表达式可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 需求&#xff1a;假如现在要求校验一个qq号码是否正确。 规则&#xff1a;6位及20位之内&#xff0c;0不能在开头&#xff0c;必须全部是数字…...

JVM学习-Class文件结构②

访问标识(access_flag) 在常量池后&#xff0c;紧跟着访问标记&#xff0c;标记使用两个字节表示&#xff0c;用于识别一些类或接口层次的访问信息&#xff0c;包括这个Class是类还是接口&#xff0c;是否定义为public类型&#xff0c;是否定义为abstract类型&#xff0c;如果…...

数据库连接项目

MySQL...

MySQL--InnoDB体系结构

目录 一、物理存储结构 二、表空间 1.数据表空间介绍 2.数据表空间迁移 3.共享表空间 4.临时表空间 5.undo表空间 三、InnoDB内存结构 1.innodb_buffer_pool 2.innodb_log_buffer 四、InnoDB 8.0结构图例 五、InnoDB重要参数 1.redo log刷新磁盘策略 2.刷盘方式&…...

ffplay 使用文档介绍

ffplay ffplay 是一个简单的媒体播放器,它是 FFmpeg 项目的一部分。FFmpeg 是一个广泛使用的多媒体框架,能够解码、编码、转码、复用、解复用、流化、过滤和播放几乎所有类型的媒体文件。 ffplay 主要用于测试和调试,因为它提供了一个命令行界面,可以方便地查看媒体文件的…...

四种网络IO模型

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;面经 ⛺️稳中求进&#xff0c;晒太阳 IO的定义 IO是计算机内存与外部设备之间拷贝数据的过程。CPU访问内存的速度远高于外部设备。因此CPU是先把外部设备的数据读取到内存&#xff0c;在…...

Mixed-precision计算原理(FP32+FP16)

原文&#xff1a; https://lightning.ai/pages/community/tutorial/accelerating-large-language-models-with-mixed-precision-techniques/ This approach allows for efficient training while maintaining the accuracy and stability of the neural network. In more det…...

Go 控制协程(goroutine)的并发数量

在使用协程并发处理某些任务时, 其并发数量往往因为各种因素的限制不能无限的增大. 例如网络请求、数据库查询等等。 从运行效率角度考虑&#xff0c;在相关服务可以负载的前提下&#xff08;限制最大并发数&#xff09;&#xff0c;尽可能高的并发。 在Go语言中&#xff0c;…...

web安全渗透测试十大常规项(一):web渗透测试之CSRF跨站请求伪造

渗透测试之CSRF跨站请求伪造 CSRF跨站请求伪造 CSRF跨站请求伪造...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...