当前位置: 首页 > news >正文

用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)

为了测试 Adam、RMSProp 和 Adagrad 算法的性能,你可以使用四个凸函数进行实验。以下是一些常用的凸函数示例:

  1. Rosenbrock 函数:

    Rosenbrock函数

  2. Booth 函数:

    Booth函数

  3. Himmelblau 函数:

    Himmelblau函数

  4. Beale 函数:

    Beale函数

你可以选择其中一个或多个函数来测试算法的性能。对于每个函数,你可以使用不同的初始点,并应用 Adam、RMSProp 和 Adagrad 算法来寻找最优点。最优点可以通过达到较低的函数值或满足预定精度条件来定义。

在实验过程中,你可以记录每个算法在不同函数和初始点上找到最优点的迭代次数、计算时间以及最终的函数值。通过比较这些指标,你可以评估每个算法的性能和效果。

请注意,算法的性能可能会因函数的形状和参数设置而有所不同。因此,建议你在不同的凸函数上进行多次实验,以获得更全面的性能比较结果。

#include <iostream>
#include <cmath>
#include <vector>// 定义凸函数类
class ConvexFunction {
public:virtual double evaluate(const std::vector<double>& x) = 0;
};// Rosenbrock 函数
class RosenbrockFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double sum = 0.0;for (size_t i = 0; i < x.size() - 1; ++i) {double term1 = pow(x[i + 1] - pow(x[i], 2), 2);double term2 = pow(1 - x[i], 2);sum += 100 * term1 + term2;}return sum;}
};// Booth 函数
class BoothFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(x[0] + 2 * x[1] - 7, 2);double term2 = pow(2 * x[0] + x[1] - 5, 2);return term1 + term2;}
};// Himmelblau 函数
class HimmelblauFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(pow(x[0], 2) + x[1] - 11, 2);double term2 = pow(x[0] + pow(x[1], 2) - 7, 2);return term1 + term2;}
};// Beale 函数
class BealeFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(1.5 - x[0] + x[0] * x[1], 2);double term2 = pow(2.25 - x[0] + x[0] * pow(x[1], 2), 2);double term3 = pow(2.625 - x[0] + x[0] * pow(x[1], 3), 2);return term1 + term2 + term3;}
};// Adam 算法
std::vector<double> adam(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> m(x.size(), 0.0);std::vector<double> v(x.size(), 0.0);double beta1 = 0.9;double beta2 = 0.999;double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {m[j] = beta1 * m[j] + (1 - beta1) * gradient[j];v[j] = beta2 * v[j] + (1 - beta2) * pow(gradient[j], 2);double m_hat = m[j] / (1 - pow(beta1, i + 1));double v_hat = v[j] / (1 - pow(beta2, i + 1));x[j] -= learning_rate * m_hat / (sqrt(v_hat) + epsilon);}}return x;
}// RMSProp 算法
std::vector<double> rmsprop(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, double decay_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] = decay_rate * cache[j] + (1 - decay_rate) * pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}// Adagrad 算法
std::vector<double> adagrad(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] += pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}int main() {// 创建凸函数对象RosenbrockFunction rosenbrock;BoothFunction booth;HimmelblauFunction himmelblau;BealeFunction beale;// 设置算法参数double learning_rate = 0.01;double decay_rate = 0.9;int max_iterations = 1000;// 初始化初始点std::vector<double> initial_x = { 0.0, 0.0 };// 使用 Adam 算法找到最优点std::vector<double> adam_result = adam(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adam Result: (" << adam_result[0] << ", " << adam_result[1] << ")" << std::endl;// 使用 RMSProp 算法找到最优点std::vector<double> rmsprop_result = rmsprop(rosenbrock, initial_x, learning_rate, decay_rate, max_iterations);std::cout << "RMSProp Result: (" << rmsprop_result[0] << ", " << rmsprop_result[1] << ")" << std::endl;// 使用 Adagrad 算法找到最优点std::vector<double> adagrad_result = adagrad(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adagrad Result: (" << adagrad_result[0] << ", " << adagrad_result[1] << ")" << std::endl;return 0;
}

相关文章:

用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)

为了测试 Adam、RMSProp 和 Adagrad 算法的性能&#xff0c;你可以使用四个凸函数进行实验。以下是一些常用的凸函数示例&#xff1a; Rosenbrock 函数&#xff1a; Booth 函数&#xff1a; Himmelblau 函数&#xff1a; Beale 函数&#xff1a; 你可以选择其中一个或多…...

AJAX初级

AJAX的概念&#xff1a; 使用浏览器的 XMLHttpRequest 对象 与服务器通信 浏览器网页中&#xff0c;使用 AJAX技术&#xff08;XHR对象&#xff09;发起获取省份列表数据的请求&#xff0c;服务器代码响应准备好的省份列表数据给前端&#xff0c;前端拿到数据数组以后&#xf…...

重载大于号运算符,比较复数大小

本题目要求编写代码的功能为&#xff1a; 输入两个复数&#xff08;变量名自拟&#xff09;&#xff0c;比较复数模的大小&#xff0c;复数实部与虚部都是整数 要求输入时输入4个整数&#xff0c;分别代表复数1的实部、虚部&#xff0c;复数2的实部虚部 输入格式: 在同一行中输…...

go ast语义分析实现指标计算器

什么是AST 首先我们要知道AST是什么&#xff08;Abstract Syntax Tree&#xff0c;AST&#xff09;&#xff0c;简称为语法树&#xff0c;是go语言源代码语法结构的一种抽象表示。它以树状的形式表现编程语言的语法结构&#xff0c;树上的每个节点都表示源代码中的一种结构。 …...

【Vue】组件间传参与方法调用

【前言】 … 【目标】 1 了解组件间传参 2 组件间自定义事件绑定与解绑 3 组件的事件总线 4 消息订阅与发布 一 组件间传参 1 props 引入并使用组件:传递参数 <template><div id="app"><HelloWorld :msg="msg" :name="name" …...

类和对象2

三、C对象模型和this指针 3.1 成员变量和成员函数分开存储 在C中&#xff0c;类内的成员变量和成员函数分开存储&#xff0c;只有非静态成员变量才属于类的对象上 #define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> #include <string.h> using namespace …...

Linux系统命令traceroute详解(语法、选项、原理和实例)

目录 一、traceroute概述 二、语法 1、基本语法 2、命令选项 三、帮助信息 四、示例 1. 使用默认模式&#xff08;ICMP Echo&#xff09;追踪到目标主机 2. 使用UDP模式&#xff08;需要root权限&#xff09;追踪到目标主机 3. 不解析IP地址为主机名&#xff0c;直接显…...

中兴通讯助力中国移动,推动SPN AI节能技术于23省规模部署

SPN作为中国移动自主创新的新一代综合承载网络&#xff0c;相比PTN设备&#xff0c;SPN的单机容量及性能有大幅提升&#xff0c;整机功耗也相应变大。在当前国家双碳政策的目标下&#xff0c;SPN设备的节能降耗也日益成为中国移动关注的焦点。因此&#xff0c;中国移动选择与中…...

SQL Server--死锁

今天&#xff0c;客户反应打不开xxx页面了。好家伙肯定锁表了。。。。。 只能先吧死锁进程先kill掉&#xff0c;不能耽误客户生产环境运行。。。。。 一定要看看是那张表发生了死锁 1、查询死锁语句 select dbid,* from sys.sysprocesses where 11 and spid >50 and blo…...

中科蓝讯AB32VG1中文寄存器说明GPIO端口操作

1 GPIO管理 1.1 GPIO通用控制寄存器 寄存器 1- 1 GPIOA&#xff1a;端口 A 数据寄存器 位寄存器名模式缺省描述31:8---未使用7:0GPIOA写0x00PAx 数据。当 PAx 用作 GPIO 时有效 0&#xff1a;读取时PAx为输入低电平状态&#xff0c;写入时PAx为输出低电平; 1&#xff1a;PAx…...

如何查看热门GPT应用?

1、登陆chatgpt 2、访问 https://chatgpt.com/gpts 3、在该界面&#xff0c;可以搜索并使用image generator, Write For Me&#xff0c;Language Teature等热门应用。...

C++中的各种定义

文章目录 前言一、1、unsigned2、_countof、sizeof 总结 前言 一、 1、unsigned 在C语言中&#xff0c;"unsigned"是一个数据类型修饰符&#xff0c;用于修饰整数类型&#xff0c;表示该类型的变量只能存储非负整数&#xff0c;即无符号整数。它可以应用于char、s…...

Java面向对象-常用类(日期时间类)

常用类-日期时间类 Date&#xff08;java.util.Date&#xff09; – 日期类 SimpleDateFormat – 格式化日期类 Calendar – 日历类 1 Date类 java.util.Date类表示特定的瞬间&#xff0c;精确到毫秒。 package com.qf.datetime;import java.util.Date;public class Test01 {…...

Shell环境变量深入:自定义系统环境变量

Shell环境变量深入&#xff1a;自定义系统环境变量 目标 能够自定义系统级环境变量 全局配置文件/etc/profile应用场景 当前用户进入Shell环境初始化的时候会加载全局配置文件/etc/profile里面的环境变量, 供给所有Shell程序使用 以后只要是所有Shell程序或命令使用的变量…...

【C++课程学习】:命名空间的理解(图文详解)

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;C课程学习 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 &#x1f4f7;1.命名冲突 &#x1f4f7;2.重定义 &#x1f4f7;3.命名空间 &#x1f37a;命名空间可…...

鸿蒙ArkUI-X平台差异化:【运行态差异化(@ohos.deviceInfo)】

平台差异化 简介 跨平台使用场景是一套ArkTS代码运行在多个终端设备上&#xff0c;如Android、iOS、OpenHarmony&#xff08;含基于OpenHarmony发行的商业版&#xff0c;如HarmonyOS Next&#xff09;。当不同平台业务逻辑不同&#xff0c;或使用了不支持跨平台的API&#xf…...

蓝牙Mesh模块组网时无线回程影响速率吗?

随着科技的发展&#xff0c;智能家居、智能办公等场景越来越广泛地应用于我们的生活。其中&#xff0c;蓝牙Mesh组网技术作为一种新型的无线通信技术&#xff0c;受到了越来越多用户的关注。那么&#xff0c;蓝牙Mesh模块在组网时无线回程过程中是否会影响速率呢&#xff1f;本…...

将3D检测的box框投影到BEV图片上

前言 点云数据作为一种丰富的三维空间信息表达方式&#xff0c;通常用于自动驾驶、机器人导航和三维建模等领域。然而&#xff0c;点云数据的直观性不如二维图像&#xff0c;这限制了它在一些需要快速视觉反馈的应用场景中的使用。本文将探讨如何将点云数据转换为二维图像&…...

Flutter 中的 ClipOval 小部件:全面指南

Flutter 中的 ClipOval 小部件&#xff1a;全面指南 在Flutter的丰富布局库中&#xff0c;ClipOval是一个用于裁剪子组件的显示区域为椭圆形或圆形的小部件。这种裁剪效果可以用于创建头像、图标或其他图形元素的美观边框。本文将提供ClipOval的全面指南&#xff0c;帮助你了解…...

ubuntu 硬盘转移

我插了两个 文件系统&#xff1a; ubuntu 硬盘转移&#xff1a; sudo dd if/dev/sdX1 of/dev/sdY1 bs128K convnoerror,sync statusprogressdd 的意思是DiskToDisk&#xff0c;if 是输入文件系统&#xff0c;of是输出文件系统。 bs是每次传递的数据大小。 注意&#xff1a;接…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...