实际案例分析
实际案例分析
一、数据准备与特征工程
1.1数据收集
在实际案例分析中,首先需要收集相关数据。数据来源可以包括公开数据集、企业内部数据、互联网爬虫抓取等。为了保证数据的质量和准确性,数据收集过程中需遵循以下原则:
-针对性强:确保收集的数据与分析目标密切相关;
-完整性:确保数据涵盖分析所需的所有相关信息;
-时效性:收集最新、最紧迫的数据,以满足实际需求;
-可靠性:确保数据来源可信,避免虚假或错误数据。
1.2数据预处理
数据预处理是分析工作的重要环节,包括数据清洗、数据整合、数据转换等。数据预处理的目的是提高数据质量,为后续分析奠定基础。
1.2.1数据清洗
数据清洗是指对数据中的错误、缺失、异常值等进行处理。错误数据包括记录错误、数值错误等,需通过数据校验、逻辑检验等方法进行纠正;缺失数据可通过填充、插值等方法进行处理;异常值检测与处理有助于消除数据中的噪声,使数据更加平稳。
1.2.2数据整合
数据整合是将来自不同来源、格式、结构的数据进行统一处理,使其成为一致、完整的数据。数据整合的方法包括数据合并、数据聚合等。
1.2.3数据转换
数据转换是将原始数据转换为适合分析的形式。常见的数据转换包括数据类型转换、数据规范化等。
1.3特征工程
特征工程是将原始数据转换为具有代表性的特征,以提高模型性能。特征工程包括特征选择、特征提取、特征变换等。
1.3.1特征选择
特征选择是筛选出对目标变量具有较强解释力的特征。常用的特征选择方法包括相关性分析、主成分分析(PCA)、递归特征消除(RFE)等。
1.3.2特征提取
特征提取是从原始数据中提取有用信息,形成新的特征。常见的特征提取方法包括线性变换、非线性变换、降维等。
1.3.3特征变换
特征变换是将特征从一种形式转换为另一种形式,以提高模型的可解释性。常见的特征变换方法包括离散化、标准化、归一化等。
二、模型训练与验证
2.1模型选择
在实际案例分析中,根据问题类型和数据特点选择合适的模型。常见的问题类型包括分类、回归、聚类、时间序列预测等,对应的模型包括逻辑回归、支持向量机(SVM)、决策树、随机森林、神经网络等。
2.2模型训练
模型训练是将数据集划分为训练集和验证集,使用训练集对模型进行训练。在训练过程中,需要调整模型参数,以达到最佳的模型性能。
2.3模型验证
模型验证是通过使用验证集评估模型性能,确定模型是否满足实际需求。常见的模型验证指标包括准确率、精确率、召回率、F1值等。
三、结果解释与应用
3.1结果解释
结果解释是将模型预测结果与实际结果进行对比,分析模型性能及局限性。常见的结果解释方法包括混淆矩阵、特征重要性分析等。
3.2应用建议
根据模型预测结果,为实际问题提供解决方案。应用建议应具有可行性、针对性和实用性,以促进实际问题的解决。
通过以上步骤,实际案例分析得以完成。在整个过程中,数据分析人员需遵循科学的方法和原则,确保分析结果的有效性和可靠性。同时,结合实际案例不断调整和完善分析方法,提高分析能力,为我国数据科学领域的发展贡献力量。
相关文章:
实际案例分析
实际案例分析 一、数据准备与特征工程 1.1数据收集 在实际案例分析中,首先需要收集相关数据。数据来源可以包括公开数据集、企业内部数据、互联网爬虫抓取等。为了保证数据的质量和准确性,数据收集过程中需遵循以下原则: -针对性强&#…...
JAVA实现图书管理系统(初阶)
一.抽象出对象: 1.要有书架,图书,用户(包括普通用户,管理员用户)。根据这些我们可以建立几个包,来把繁杂的代码分开,再通过一个类来把这些,对象整合起来实现系统。说到整合…...
【Torch学习笔记】
作者:zjk 和 的区别是逐元素相乘,是矩阵相乘 cat stack 的区别 cat stack 是用于沿新维度将多个张量堆叠在一起的函数。它要求所有输入张量具有相同的形状,并在指定的新维度上进行堆叠。...
LeetCode算法题:42. 接雨水(Java)
题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3…...
LINGO:存贮问题
存贮模型中的基本概念 模型: 基本要素: (1)需求率:单位时间内对某种物品的需求量,用D表示。 (2)订货批量:一次订货中,包含某种货物的数量,用 Q表…...
《微服务王国的守护者:Spring Cloud Dubbo的奇幻冒险》
5. 经典问题与解决方案 5.3 服务追踪与链路监控 在微服务架构的广袤宇宙中,服务间的调用关系错综复杂,如同一张庞大的星系网络。当一个请求穿越这个星系,经过多个服务节点时,如何追踪它的路径,如何监控整个链路的健康…...
(九)npm 使用
视频链接:尚硅谷2024最新版微信小程序 文章目录 使用 npm 包自定义构建 npmVant Weapp 组件库的使用Vant Weapp 组件样式覆盖使用 npm 包 目前小程序已经支持使用 npm 安装第三方包,因为 node_modules 目录中的包不会参与小程序项目的编译、上传和打包, 因此在小程序项目中要…...
Thinkphp5内核宠物领养平台H5源码
源码介绍 Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码 可封装APP,适合做猫狗宠物类的发信息发布,当然懂的修改一下,做其他信息发布也是可以的。 源码预览 源码下载 https://download.csdn.net/download/huayula/89361685...
一、Elasticsearch介绍与部署
目录 一、什么是Elasticsearch 二、安装Elasticsearch 三、配置es 四、启动es 1、下载安装elasticsearch的插件head 2、在浏览器,加载扩展程序 3、运行扩展程序 4、输入es地址就可以了 五、Elasticsearch 创建、查看、删除索引、创建、查看、修改、删除文档…...
NL6621 实现获取天气情况
一、主要完成的工作 1、建立TASK INT32 main(VOID) {/* system Init */SystemInit();OSTaskCreate(TestAppMain, NULL, &sAppStartTaskStack[NST_APP_START_TASK_STK_SIZE -1], NST_APP_TASK_START_PRIO); OSStart();return 1; } 2、application test task VOID TestAp…...
SpringCloud配置文件bootrap
解决方案: 情况一、SpringBoot 版本 小于 2.4.0 版本,添加以下依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-context</artifactId> </dependency> 情况二、SpringBoot…...
经典面试题:进程、线程、协程开销问题,为什么进程切换的开销比线程的大?
上下文切换的过程? 上下文切换是操作系统在将CPU从一个进程切换到另一个进程时所执行的过程。它涉及保存当前执行进程的状态并加载下一个将要执行的进程的状态。下面是上下文切换的详细过程: 保存当前进程的上下文: 当操作系统决定切换到另…...
鸿蒙 DevEco Studio 3.1 Release 下载sdk报错的解决办法
鸿蒙 解决下载SDK报错的解决方法 最近在学习鸿蒙开发,以后也会记录一些关于鸿蒙相关的问题和解决方法,希望能帮助到大家。 总的来说一般有下面这样的报错 报错一: Components to install: - ArkTS 3.2.12.5 - System-image-phone 3.1.0.3…...
QGIS开发笔记(二):Windows安装版二次开发环境搭建(上):安装OSGeo4W运行依赖其Qt的基础环境Demo
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/139136356 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
设计一套Kafka到RocketMQ的双写+双读技术方案,实现无缝迁移!
设计一套Kafka到RocketMQ的双写双读技术方案,实现无缝迁移! 1、背景2、方案3、具体逻辑 1、背景 假设你们公司本来线上的MQ用的主要是Kafka,现在要从Kafka迁移到RocketMQ去,那么这个迁移的过程应该怎么做呢?应该采用什…...
Mysql下Limit注入方法(此方法仅适用于5.0.0<mysql<5.6.6的版本)
SQL语句类似下面这样:(此方法仅适用于5.0.0<mysql<5.6.6的版本) SELECT field FROM table WHERE id > 0 ORDER BY id LIMIT (注入点) 问题的关键在于,语句中有 order by 关键字,mysql…...
Makefile学习笔记15|u-boot顶层Makefile01
Makefile学习笔记15|u-boot顶层Makefile01 希望看到这篇文章的朋友能在评论区留下宝贵的建议来让我们共同成长,谢谢。 这里是目录 版本号信息 # SPDX-License-Identifier: GPL-2.0VERSION 2024 PATCHLEVEL 01 SUBLEVEL EXTRAVERSION -rc4 NAME 这里定义了u-bo…...
C++笔记之Unix时间戳、UTC、TSN、系统时间戳、时区转换、local时间笔记
C++笔记之Unix时间戳、UTC、TSN、系统时间戳、时区转换、local时间笔记 ——2024-05-26 夜 code review! 参考博文 C++笔记之获取当前本地时间以及utc时间...
leetcode338-Counting Bits
题目 给你一个整数 n ,对于 0 < i < n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n 1 的数组 ans 作为答案。 示例 1: 输入:n 2 输出:[0,1,1] 解释: 0 --> 0 1 --&…...
sql server怎么存储图片
sql server怎么存储图片 在SQL Server中,可以使用VARBINARY数据类型来存储图片。以下是一个简单的例子,展示了如何将图片存储到数据库中,并从数据库中检索出来。 首先,创建一个表来存储图片数据: CREATE TABLE Image…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
