使用 Ollama框架 下载和使用 Llama3 AI大模型的完整指南
🏡作者主页:点击!
🤖AI大模型部署与应用专栏:点击!
⏰️创作时间:2024年5月24日20点59分
🀄️文章质量:96分
目录
💥Ollama介绍
主要特点
主要优点
应用场景
示例模型
📶Llama3 介绍
功能展示
Llama3 的应用
Llama3 的未来
🤖部署教程
1.下载Ollama
2.下载llama3的大模型
💯趣站推荐💯
💥Ollama介绍
Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。它提供了一套简单的工具和命令,使任何人都可以轻松地启动和使用各种流行的LLM,例如GPT-3、Megatron-Turing NLG和WuDao 2.0。
主要特点
简化部署: Ollama 使用 Docker 容器技术来简化大型语言模型的部署和管理。用户只需简单的命令即可启动和停止模型,而无需担心底层的复杂性。
丰富的模型库: Ollama 提供了丰富的预训练模型库,涵盖了各种自然语言处理任务,如文本生成、翻译、问答等。用户可以轻松地选择和使用所需的模型。
跨平台支持: Ollama 支持多种操作系统,包括 Windows、macOS 和 Linux,使其能够满足不同用户的需求。
灵活的自定义: Ollama 提供了灵活的自定义选项,允许用户根据自己的需求调整模型的行为。
主要优点
离线使用: Ollama 可以让用户在离线环境下使用LLM,这对于隐私敏感或网络连接不稳定的情况非常有用。
降低成本: Ollama 可以帮助用户降低使用LLM的成本,因为它避免了云服务的高昂费用。
提高安全性: Ollama 可以提高LLM使用的安全性,因为它允许用户完全控制自己的数据和模型。
应用场景
研究和教育: Ollama 可以用于自然语言处理、机器翻译、人工智能等领域的教学和研究。
开发和测试: Ollama 可以用于开发和测试新的自然语言处理应用程序。
个人使用: Ollama 可以用于个人创作、娱乐等目的
示例模型
以下只是部分模型:
模型 | 参数 | 大小 | 下载 |
---|---|---|---|
Llama 3 | 8B | 4.7GB | ollama run llama3 |
Llama 3 | 70B | 40GB | ollama run llama3:70b |
Phi 3 Mini | 3.8B | 2.3GB | ollama run phi3 |
Phi 3 Medium | 14B | 7.9GB | ollama run phi3:medium |
Gemma | 2B | 1.4GB | ollama run gemma:2b |
Gemma | 7B | 4.8GB | ollama run gemma:7b |
Mistral | 7B | 4.1GB | ollama run mistral |
Moondream 2 | 1.4B | 829MB | ollama run moondream |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
LLaVA | 7B | 4.5GB | ollama run llava |
Solar | 10.7B | 6.1GB | ollama run solar |
📶Llama3 介绍
Llama3 是由 Meta AI 开发的最新一代开源大型语言模型 (LLM)。它基于 137B 参数的 Transformer 架构,在大量文本和代码数据集上进行训练。与前代模型相比,Llama3 在许多自然语言处理任务上表现出更强的性能。
功能展示
文本生成: Llama3 可以生成更具创意和信息量的文本,包括诗歌、代码、脚本、音乐作品、电子邮件、信件等。
翻译: Llama3 可以更准确地翻译语言,并支持更多语言之间的互译。
问答: Llama3 可以更准确地回答问题,即使是开放式、有挑战性或奇怪的问题。
代码生成: Llama3 可以生成更复杂的代码,并可以根据需求生成不同编程语言的代码。
Llama3 的应用
用于各种领域,包括:
自然语言处理: Llama3 可以用于各种自然语言处理任务,如文本生成、翻译、问答、文本摘要、情感分析等。
机器学习: Llama3 可以作为其他机器学习模型的特征提取器或预训练模型。
教育: Llama3 可以用于个性化学习、自动批改作业、创建教育内容等。
娱乐: Llama3 可以用于生成游戏内容、创作故事、编写音乐等。
商业: Llama3 可以用于客户服务、市场营销、产品开发等。
Lama3 的发布标志着 LLM 技术的重大进展。它使研究人员和开发人员能够更轻松地构建和使用强大的语言模型,并有望推动自然语言处理领域取得新的突破。
Llama3 的未来
Llama3 是一个不断发展的项目。Meta AI 将继续改进模型的性能和功能,并将其应用于新的领域。
🤖部署教程
1.下载Ollama
官网地址:点击跳转!
下一步默认下载即可
2.下载llama3的大模型
选择对应的版本下载即可(根据自己的电脑硬件需求) ,我这边下载一个8b的模型用于测试!
管理员模式打开CMD命令行输入在官网复制的模型命令
第一次登录需要下载,请耐心等待
进入字符界面之后提问问题(如果回答的是英文,你可以让他使用中文去回答)
我简单的提问几个问题给大家实验
>>> 用中文介绍一下自己
😊 我是 LLaMA,Meta AI 研究院开发的一款人工智能助手。我可以理解和回应人类语言,就像进行正常对话一样。以下是一些关于我的有趣事实:
1. **对话式 AI**:我被设计成可以模拟人际对话,使用自然语言处理(NLP)和机器学习算法来理解上下文并回应。
2. **知识库**:我的训练数据包括了来自各种来源的海量文字,这使得我能够提供关于多种主题的信息,包括历史、科学、技术、文化 等。
3. **多语言支持**:我可以理解和回应多种语言,虽然我的语言能力可能因语言而异。
4. **创造生成**:除了提供事实信息,我还能生成Creative内容,如故事、诗歌或剧本对白。
5. **不断学习**:随着我与更多用户的交互和反馈,我不断学习并改进自己的回答,以更好地为您服务。一些我擅长的话题包括:
* 科学:物理、生物、化学、天文学
* 技术:编程语言、软件开发、人工智能、机器学习
* 历史:世界历史、文化事件、名人
* 文化:音乐、电影、文学、艺术
* 健康与 wellness:医学、营养、健身如果您有任何问题,请随时提出,我将尽力提供有帮助的回答! 😊
>>> 介绍一下java
😊 Java 是一种广泛使用的编程语言,首次出现于1995年。它由 James Gosling 和 Sun Microsystems 开发,现由 Oracle Corporation 维护。以下是一些关于 Java 的有趣事实:
1. **面向对象**:Java 是一种面向对象的编程语言,它支持封装、继承和多态等基本概念。
2. **平台独立**:Java 语言具有平台独立性,可以在任何支持 Java 虚拟机(JVM)的设备上运行,不管是 Windows、Macintosh 或 Linux。
3. **跨平台开发**:Java 的“Write Once, Run Anywhere”(写一遍,跑处处)特点,使得开发者可以使用 Java 开发的应用程序在多种平台上运行,这提高了应用程序的可移植性和广泛性。
4. **安全**:Java 语言具有强大的安全机制,可以防止代码注入、数据泄露等安全问题。
5. **庞大社区**:Java拥有一个庞大的开发者社区,提供了大量的开源库和工具支持。一些 Java 的常见应用场景包括:
* Web 开发:使用 Spring、Struts 等框架开发 web 应用程序
* Android 开发:使用 Android SDK 和 Java 开发移动应用程序
* Desktop 应用程序开发:使用 Swing 和 AWT 开发桌面应用程序
* Enterprise software development:使用 Hibernate、iBatis 等框架开发企业级软件Java 的一些常见特性包括:
* Class 文件:Java 程序编译后的文件格式
* JVM(Java Virtual Machine):负责执行 Java 代码的虚拟机
* bytecode:Java 代码在 JVM 中执行前的中间语言形式
* Garbage Collection(GC):自动内存管理机制,避免内存泄露和垃圾收集如果您想了解更多关于 Java 的信息,请随时提出问题,我将尽力提供有帮助的回答! 😊
可以看出回答问题的时候占用的是你本地的CPU内存资源,当他结束后CPU瞬间得到释放
当然你的性能越好,他回答的速度也就很快
提示
如果想进入需要输入你对应模型的命令:ollama run llama3:8b
缺点就是在命令行访问十分的不方便
下期文章:将大模型部署Web,具有十分友好的UI界面,看起来十分美观,访问便捷,功能丰富
💯趣站💯
前些天发现了一个巨牛的🤖人工智能学习网站,通俗易懂,风趣幽默,忍不住粉香一下给大家,人工智能, 机器算法等......
点击跳转网站!
https://www.captainbed.cn/sis/
相关文章:

使用 Ollama框架 下载和使用 Llama3 AI大模型的完整指南
🏡作者主页:点击! 🤖AI大模型部署与应用专栏:点击! ⏰️创作时间:2024年5月24日20点59分 🀄️文章质量:96分 目录 💥Ollama介绍 主要特点 主要优点 应…...

最新流媒体在线音乐系统网站源码| 音乐社区 | 多语言 | 开心版
最新流媒体在线音乐系统网站源码 源码免费下载地址抄笔记 (chaobiji.cn)...

中国改革报是什么级别的报刊?在哪些领域具有较高的影响力?
中国改革报是什么级别的报刊?在哪些领域具有较高的影响力? 《中国改革报》是国家发展和改革委员会主管的全国性综合类报纸。它在经济领域和改革发展方面具有重要的影响力,是传递国家政策、反映改革动态的重要平台。该报对于推动中国的经济改…...

乡村振兴的乡村公共服务提升:提升乡村公共服务水平,满足农民多样化需求,构建幸福美好的美丽乡村
目录 一、引言 二、乡村公共服务提升的必要性 (一)满足农民多样化需求 (二)促进乡村经济发展 (三)构建幸福美好的美丽乡村 三、乡村公共服务面临的挑战 (一)基础设施薄弱 &a…...
【在 Windows 上使用 ADB 安装 Android 设备上的 atx-agent】
在进行 Android 应用的 UI 自动化测试时,通常需要在设备上安装一些辅助工具。其中一个常用的工具是 atx-agent,它可以帮助我们在 Android 设备上进行 UI 自动化操作。本文将介绍如何在 Windows 环境下使用 ADB 安装 Android 设备上的 atx-agent。 1. 下…...

iptables 防火墙
linux防火墙基础 iptables的表,链结构 数据包控制的匹配流程 编写防火墙规则 基本语法,控制类型 添加,查看,删除规则 规则的匹配条件 iptables组件 netfilter :属于内核态的功能体系,是一个内核模块…...

软件设计师笔记1
分享一下学习软考时做的笔记,笔者太懒了,后续篇章都没咋记录,现在放出来水几篇文章 另外,本章内容都是结合教材,B站课堂记录。下一篇软考笔记知识点来自真题 软考笔记 第一章 1. 计算机的组成 1. 控制器 控制器由…...
springboot集成mybatis 单元测试
1、依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0…...
ecc dsa rsa des
ECC(椭圆曲线密码学)、DSA(数字签名算法)、RSA(一种公钥加密技术)和DES(数据加密标准)都是密码学领域中重要的加密和安全技术。下面是对这四种技术的简要介绍: 椭圆曲线密…...
Gitee的原理及应用详解(三)
本系列文章简介: Gitee是一款开源的代码托管平台,是国内最大的代码托管平台之一。它基于Git版本控制系统,提供了代码托管、项目管理、协作开发、代码审查等功能,方便团队协作和项目管理。Gitee的出现,在国内的开发者社…...

Mia for Gmail for Mac:Mac用户的邮件管理首选
对于追求高效工作的Mac用户来说,Mia for Gmail for Mac无疑是邮件管理的首选工具。它以其卓越的性能和丰富的功能,为用户带来了前所未有的高效邮件管理体验。 Mia for Gmail for Mac不仅支持多帐号登录和标签选择功能,还提供了邮件分类、垃圾…...

如何在忘记密码的情况下解锁 iPhone? 6 种方法分享
您是否因为没有密码而无法解锁您的 iPhone? 别担心,这种情况比你想象的更常见!忘记密码是 iPhone 用户面临的最常见问题之一,而且可能非常令人沮丧 - 但不要绝望。 在这篇文章中,我们将与您分享绕过 iPhone 屏幕密码…...

国产操作系统上使用rsync恢复用户数据 _ 统信 _ 麒麟 _ 中科方德
原文链接:国产操作系统上使用rsync恢复用户数据 | 统信 | 麒麟 | 中科方德 Hello,大家好啊!今天给大家带来一篇关于在国产操作系统上使用rsync备份并还原用户数据的文章。rsync是一款功能强大的文件同步和备份工具,广泛用于Linux系…...

Elastic Cloud 将 Elasticsearch 向量数据库优化配置文件添加到 Microsoft Azure
作者:来自 Elastic Serena Chou, Jeff Vestal, Yuvraj Gupta 今天,我们很高兴地宣布,我们的 Elastic Cloud Vector Search 优化硬件配置文件现已可供 Elastic Cloud on Microsoft Azure 用户使用。 此硬件配置文件针对使用 Elasticsearch 作…...

Mongodb 可视化工具Robot 3t安装【windows环境下】
下载应用 打开连接点我 选择windows版本并点击下载 下载完毕,双击并傻瓜安装 连接数据库 点击图标, 点击create创建连接 填写host和port 如果有用户名密码的,在authentication里填写 5. save 并连接即可使用!...

【MATLAB】信号的熵
近似熵、样本熵、模糊熵、排列熵|、功率谱熵、奇异谱熵、能量熵、包络熵 代码内容: 获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号的熵本公众号致力于解决找代码难,写代码怵。各位有什么急需…...

【QT环境配置】节约msvc2017灰色不可用问题
1. 问题 msvc2017不可用,2019、2022都同理解决。 2. 解决 打开控制面板->程序->程序和功能->找到自己安装的vs程序->鼠标右键后出现卸载更改->点击更改 找到下面组件即可。(msvc2019就找msvcv142)...

MyBatis框架的使用:mybatis介绍+环境搭建+基础sql的使用+如何使用Map传入多个参数+返回多个实体用List或者Map接收+特殊sql的使用
MyBatis框架的使用:mybatis介绍环境搭建基础sql的使用如何使用Map传入多个参数返回多个实体用List或者Map接收特殊sql的使用 一、MyBatis介绍1.1 特性1.2 下载地址1.3 和其它持久层技术对比 二、搭建环境2.1配置maven2.2 创建mybatis配置文件2.3 搭建测试环境 三、基…...

linux centos nginx配置浏览器访问后端(tomcat日志)
1、配置nginx访问tomcat日志路径 vim /usr/local/nginx/conf/nginx,conflocation ^~ /logs {autoindex on;autoindex_exact_size on;autoindex_localtime on;alias /home/tomcat/apache-tomcat-9.0.89-1/logs;}###配置讲解### 1、location ^~ /logs { … }: location…...
01-03.Vue:v-on的事件修饰符
01-03.Vue:v-on的事件修饰符 前言v-on的事件修饰符.stop的举例.capture举例.prevent的举例1.prevent的举例2.self举例 前言 我们接着上一篇文章 01-02.Vue的常用指令(二) 来讲 下一篇文章 01-04.Vue的使用示例:列表功能 v-on的事件修饰符 v-on 提供了很…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...