当前位置: 首页 > news >正文

使用 Ollama框架 下载和使用 Llama3 AI大模型的完整指南

🏡作者主页:点击! 

🤖AI大模型部署与应用专栏:点击!

⏰️创作时间:2024年5月24日20点59分

🀄️文章质量:96分


目录

💥Ollama介绍

主要特点

主要优点

应用场景

示例模型

📶Llama3 介绍

功能展示

Llama3 的应用

Llama3 的未来

🤖部署教程

1.下载Ollama

2.下载llama3的大模型

 💯趣站推荐💯


💥Ollama介绍

Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。它提供了一套简单的工具和命令,使任何人都可以轻松地启动和使用各种流行的LLM,例如GPT-3、Megatron-Turing NLG和WuDao 2.0。

主要特点

简化部署: Ollama 使用 Docker 容器技术来简化大型语言模型的部署和管理。用户只需简单的命令即可启动和停止模型,而无需担心底层的复杂性。

丰富的模型库: Ollama 提供了丰富的预训练模型库,涵盖了各种自然语言处理任务,如文本生成、翻译、问答等。用户可以轻松地选择和使用所需的模型。

跨平台支持: Ollama 支持多种操作系统,包括 Windows、macOS 和 Linux,使其能够满足不同用户的需求。

灵活的自定义: Ollama 提供了灵活的自定义选项,允许用户根据自己的需求调整模型的行为。

主要优点

离线使用: Ollama 可以让用户在离线环境下使用LLM,这对于隐私敏感或网络连接不稳定的情况非常有用。

降低成本: Ollama 可以帮助用户降低使用LLM的成本,因为它避免了云服务的高昂费用。

提高安全性: Ollama 可以提高LLM使用的安全性,因为它允许用户完全控制自己的数据和模型。

应用场景

研究和教育: Ollama 可以用于自然语言处理、机器翻译、人工智能等领域的教学和研究。

开发和测试: Ollama 可以用于开发和测试新的自然语言处理应用程序

个人使用: Ollama 可以用于个人创作、娱乐等目的

示例模型

以下只是部分模型:

模型参数大小下载
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi 3 Mini3.8B2.3GBollama run phi3
Phi 3 Medium14B7.9GBollama run phi3:medium
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Solar10.7B6.1GBollama run solar

📶Llama3 介绍

Llama3 是由 Meta AI 开发的最新一代开源大型语言模型 (LLM)。它基于 137B 参数的 Transformer 架构,在大量文本和代码数据集上进行训练。与前代模型相比,Llama3 在许多自然语言处理任务上表现出更强的性能。

功能展示

文本生成: Llama3 可以生成更具创意和信息量的文本,包括诗歌、代码、脚本、音乐作品、电子邮件、信件等。

翻译: Llama3 可以更准确地翻译语言,并支持更多语言之间的互译。

问答: Llama3 可以更准确地回答问题,即使是开放式、有挑战性或奇怪的问题。

代码生成: Llama3 可以生成更复杂的代码,并可以根据需求生成不同编程语言的代码。

Llama3 的应用

用于各种领域,包括:

自然语言处理: Llama3 可以用于各种自然语言处理任务,如文本生成、翻译、问答、文本摘要、情感分析等。

机器学习: Llama3 可以作为其他机器学习模型的特征提取器或预训练模型。

教育: Llama3 可以用于个性化学习、自动批改作业、创建教育内容等。

娱乐: Llama3 可以用于生成游戏内容、创作故事、编写音乐等。

商业: Llama3 可以用于客户服务、市场营销、产品开发等。

Lama3 的发布标志着 LLM 技术的重大进展。它使研究人员和开发人员能够更轻松地构建和使用强大的语言模型,并有望推动自然语言处理领域取得新的突破。

Llama3 的未来

Llama3 是一个不断发展的项目。Meta AI 将继续改进模型的性能和功能,并将其应用于新的领域。

🤖部署教程

1.下载Ollama

官网地址:点击跳转!

下一步默认下载即可

2.下载llama3的大模型

选择对应的版本下载即可(根据自己的电脑硬件需求) ,我这边下载一个8b的模型用于测试!

管理员模式打开CMD命令行输入在官网复制的模型命令

第一次登录需要下载,请耐心等待

进入字符界面之后提问问题(如果回答的是英文,你可以让他使用中文去回答)

我简单的提问几个问题给大家实验

>>> 用中文介绍一下自己
😊 我是 LLaMA,Meta AI 研究院开发的一款人工智能助手。我可以理解和回应人类语言,就像进行正常对话一样。

以下是一些关于我的有趣事实:

1. **对话式 AI**:我被设计成可以模拟人际对话,使用自然语言处理(NLP)和机器学习算法来理解上下文并回应。
2. **知识库**:我的训练数据包括了来自各种来源的海量文字,这使得我能够提供关于多种主题的信息,包括历史、科学、技术、文化 等。
3. **多语言支持**:我可以理解和回应多种语言,虽然我的语言能力可能因语言而异。
4. **创造生成**:除了提供事实信息,我还能生成Creative内容,如故事、诗歌或剧本对白。
5. **不断学习**:随着我与更多用户的交互和反馈,我不断学习并改进自己的回答,以更好地为您服务。

一些我擅长的话题包括:

* 科学:物理、生物、化学、天文学
* 技术:编程语言、软件开发、人工智能、机器学习
* 历史:世界历史、文化事件、名人
* 文化:音乐、电影、文学、艺术
* 健康与 wellness:医学、营养、健身

如果您有任何问题,请随时提出,我将尽力提供有帮助的回答! 😊

>>> 介绍一下java
😊 Java 是一种广泛使用的编程语言,首次出现于1995年。它由 James Gosling 和 Sun Microsystems 开发,现由 Oracle Corporation 维护。

以下是一些关于 Java 的有趣事实:

1. **面向对象**:Java 是一种面向对象的编程语言,它支持封装、继承和多态等基本概念。
2. **平台独立**:Java 语言具有平台独立性,可以在任何支持 Java 虚拟机(JVM)的设备上运行,不管是 Windows、Macintosh 或 Linux。
3. **跨平台开发**:Java 的“Write Once, Run Anywhere”(写一遍,跑处处)特点,使得开发者可以使用 Java 开发的应用程序在多种平台上运行,这提高了应用程序的可移植性和广泛性。
4. **安全**:Java 语言具有强大的安全机制,可以防止代码注入、数据泄露等安全问题。
5. **庞大社区**:Java拥有一个庞大的开发者社区,提供了大量的开源库和工具支持。

一些 Java 的常见应用场景包括:

* Web 开发:使用 Spring、Struts 等框架开发 web 应用程序
* Android 开发:使用 Android SDK 和 Java 开发移动应用程序
* Desktop 应用程序开发:使用 Swing 和 AWT 开发桌面应用程序
* Enterprise  software development:使用 Hibernate、iBatis 等框架开发企业级软件

Java 的一些常见特性包括:

* Class 文件:Java 程序编译后的文件格式
* JVM(Java Virtual Machine):负责执行 Java 代码的虚拟机
* bytecode:Java 代码在 JVM 中执行前的中间语言形式
* Garbage Collection(GC):自动内存管理机制,避免内存泄露和垃圾收集

如果您想了解更多关于 Java 的信息,请随时提出问题,我将尽力提供有帮助的回答! 😊

可以看出回答问题的时候占用的是你本地的CPU内存资源,当他结束后CPU瞬间得到释放

当然你的性能越好,他回答的速度也就很快

提示

如果想进入需要输入你对应模型的命令:ollama run llama3:8b 

缺点就是在命令行访问十分的不方便

下期文章:将大模型部署Web,具有十分友好的UI界面,看起来十分美观,访问便捷,功能丰富

 💯趣站💯

前些天发现了一个巨牛的🤖人工智能学习网站,通俗易懂,风趣幽默,忍不住粉香一下给大家,人工智能, 机器算法等......  

点击跳转网站!icon-default.png?t=N7T8https://www.captainbed.cn/sis/

相关文章:

使用 Ollama框架 下载和使用 Llama3 AI大模型的完整指南

🏡作者主页:点击! 🤖AI大模型部署与应用专栏:点击! ⏰️创作时间:2024年5月24日20点59分 🀄️文章质量:96分 目录 💥Ollama介绍 主要特点 主要优点 应…...

最新流媒体在线音乐系统网站源码| 音乐社区 | 多语言 | 开心版

最新流媒体在线音乐系统网站源码 源码免费下载地址抄笔记 (chaobiji.cn)...

中国改革报是什么级别的报刊?在哪些领域具有较高的影响力?

中国改革报是什么级别的报刊?在哪些领域具有较高的影响力? 《中国改革报》是国家发展和改革委员会主管的全国性综合类报纸。它在经济领域和改革发展方面具有重要的影响力,是传递国家政策、反映改革动态的重要平台。该报对于推动中国的经济改…...

乡村振兴的乡村公共服务提升:提升乡村公共服务水平,满足农民多样化需求,构建幸福美好的美丽乡村

目录 一、引言 二、乡村公共服务提升的必要性 (一)满足农民多样化需求 (二)促进乡村经济发展 (三)构建幸福美好的美丽乡村 三、乡村公共服务面临的挑战 (一)基础设施薄弱 &a…...

【在 Windows 上使用 ADB 安装 Android 设备上的 atx-agent】

在进行 Android 应用的 UI 自动化测试时,通常需要在设备上安装一些辅助工具。其中一个常用的工具是 atx-agent,它可以帮助我们在 Android 设备上进行 UI 自动化操作。本文将介绍如何在 Windows 环境下使用 ADB 安装 Android 设备上的 atx-agent。 1. 下…...

iptables 防火墙

linux防火墙基础 iptables的表,链结构 数据包控制的匹配流程 编写防火墙规则 基本语法,控制类型 添加,查看,删除规则 规则的匹配条件 iptables组件 netfilter :属于内核态的功能体系,是一个内核模块…...

软件设计师笔记1

分享一下学习软考时做的笔记,笔者太懒了,后续篇章都没咋记录,现在放出来水几篇文章 另外,本章内容都是结合教材,B站课堂记录。下一篇软考笔记知识点来自真题 软考笔记 第一章 1. 计算机的组成 1. 控制器 控制器由…...

springboot集成mybatis 单元测试

1、依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0…...

ecc dsa rsa des

ECC&#xff08;椭圆曲线密码学&#xff09;、DSA&#xff08;数字签名算法&#xff09;、RSA&#xff08;一种公钥加密技术&#xff09;和DES&#xff08;数据加密标准&#xff09;都是密码学领域中重要的加密和安全技术。下面是对这四种技术的简要介绍&#xff1a; 椭圆曲线密…...

Gitee的原理及应用详解(三)

本系列文章简介&#xff1a; Gitee是一款开源的代码托管平台&#xff0c;是国内最大的代码托管平台之一。它基于Git版本控制系统&#xff0c;提供了代码托管、项目管理、协作开发、代码审查等功能&#xff0c;方便团队协作和项目管理。Gitee的出现&#xff0c;在国内的开发者社…...

Mia for Gmail for Mac:Mac用户的邮件管理首选

对于追求高效工作的Mac用户来说&#xff0c;Mia for Gmail for Mac无疑是邮件管理的首选工具。它以其卓越的性能和丰富的功能&#xff0c;为用户带来了前所未有的高效邮件管理体验。 Mia for Gmail for Mac不仅支持多帐号登录和标签选择功能&#xff0c;还提供了邮件分类、垃圾…...

如何在忘记密码的情况下解锁 iPhone? 6 种方法分享

您是否因为没有密码而无法解锁您的 iPhone&#xff1f; 别担心&#xff0c;这种情况比你想象的更常见&#xff01;忘记密码是 iPhone 用户面临的最常见问题之一&#xff0c;而且可能非常令人沮丧 - 但不要绝望。 在这篇文章中&#xff0c;我们将与您分享绕过 iPhone 屏幕密码…...

国产操作系统上使用rsync恢复用户数据 _ 统信 _ 麒麟 _ 中科方德

原文链接&#xff1a;国产操作系统上使用rsync恢复用户数据 | 统信 | 麒麟 | 中科方德 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于在国产操作系统上使用rsync备份并还原用户数据的文章。rsync是一款功能强大的文件同步和备份工具&#xff0c;广泛用于Linux系…...

Elastic Cloud 将 Elasticsearch 向量数据库优化配置文件添加到 Microsoft Azure

作者&#xff1a;来自 Elastic Serena Chou, Jeff Vestal, Yuvraj Gupta 今天&#xff0c;我们很高兴地宣布&#xff0c;我们的 Elastic Cloud Vector Search 优化硬件配置文件现已可供 Elastic Cloud on Microsoft Azure 用户使用。 此硬件配置文件针对使用 Elasticsearch 作…...

Mongodb 可视化工具Robot 3t安装【windows环境下】

下载应用 打开连接点我 选择windows版本并点击下载 下载完毕&#xff0c;双击并傻瓜安装 连接数据库 点击图标&#xff0c; 点击create创建连接 填写host和port 如果有用户名密码的&#xff0c;在authentication里填写 5. save 并连接即可使用&#xff01;...

【MATLAB】信号的熵

近似熵、样本熵、模糊熵、排列熵|、功率谱熵、奇异谱熵、能量熵、包络熵 代码内容&#xff1a; 获取代码请关注MATLAB科研小白的个人公众号&#xff08;即文章下方二维码&#xff09;&#xff0c;并回复信号的熵本公众号致力于解决找代码难&#xff0c;写代码怵。各位有什么急需…...

【QT环境配置】节约msvc2017灰色不可用问题

1. 问题 msvc2017不可用&#xff0c;2019、2022都同理解决。 2. 解决 打开控制面板->程序->程序和功能->找到自己安装的vs程序->鼠标右键后出现卸载更改->点击更改 找到下面组件即可。&#xff08;msvc2019就找msvcv142&#xff09;...

MyBatis框架的使用:mybatis介绍+环境搭建+基础sql的使用+如何使用Map传入多个参数+返回多个实体用List或者Map接收+特殊sql的使用

MyBatis框架的使用&#xff1a;mybatis介绍环境搭建基础sql的使用如何使用Map传入多个参数返回多个实体用List或者Map接收特殊sql的使用 一、MyBatis介绍1.1 特性1.2 下载地址1.3 和其它持久层技术对比 二、搭建环境2.1配置maven2.2 创建mybatis配置文件2.3 搭建测试环境 三、基…...

linux centos nginx配置浏览器访问后端(tomcat日志)

1、配置nginx访问tomcat日志路径 vim /usr/local/nginx/conf/nginx,conflocation ^~ /logs {autoindex on;autoindex_exact_size on;autoindex_localtime on;alias /home/tomcat/apache-tomcat-9.0.89-1/logs;}###配置讲解### 1、location ^~ /logs { … }: location&#xf…...

01-03.Vue:v-on的事件修饰符

01-03.Vue&#xff1a;v-on的事件修饰符 前言v-on的事件修饰符.stop的举例.capture举例.prevent的举例1.prevent的举例2.self举例 前言 我们接着上一篇文章 01-02.Vue的常用指令(二) 来讲 下一篇文章 01-04.Vue的使用示例&#xff1a;列表功能 v-on的事件修饰符 v-on 提供了很…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...