当前位置: 首页 > news >正文

路径规划搜路算法有哪些?

路径规划搜索算法是帮助移动机器人或自动化系统在环境中从起点导航至终点的计算方法。以下是一些常见的路径规划搜索算法:

  1. Dijkstra算法:一种经典的最短路径搜索算法,适用于没有负权边的图。

  2. A*算法:一种启发式搜索算法,通过结合实际已走路径和预估到目标的距离来优化搜索过程。

  3. Theta*算法:一个角度优化的路径规划算法,允许在任意角度上进行路径搜索。

  4. Lazy Theta*:Theta*算法的变体,仅在必要时计算路径成本,提高了搜索效率。

  5. Jump Point Search (JPS):利用地图的对称性和可达性来跳过不必要的节点,减少搜索开销。

  6. D* Lite:一种增量式启发式搜索算法,适用于动态环境中的路径重规划。

  7. RRT (Rapidly-exploring Random Tree):通过随机采样和树的扩展来探索未知环境中的路径。

  8. RRT*:RRT的优化版本,通过最小化路径长度来寻找最优路径。

  9. PRM (Probabilistic Roadmap Method):通过在配置空间中随机采样并测试连通性来构建路径图。

  10. APF (Artificial Potential Field):通过在环境中创建吸引和排斥的虚拟力场来引导机器人向目标移动。

  11. EBA (Elastic Band Algorithm):一种路径规划和运动控制方法,通过限制机器人轨迹在一个弹性带内来避免碰撞。

  12. VFH (Vector Field Histogram):通过收集环境数据并表示为二维向量场来指导机器人路径选择。

  13. Ant Colony Optimization (ACO):模拟蚂蚁觅食行为的优化算法,用于解决路径规划问题。

  14. Particle Swarm Optimization (PSO):模拟鸟群或鱼群的社会行为,通过群体合作来寻找最优解。

  15. Genetic Algorithm (GA):模仿自然选择和遗传机制的优化算法,用于路径规划中的全局搜索。

  16. Neural Network Algorithms:使用神经网络进行学习和优化,适应于复杂和动态的环境。

  17. Fuzzy Logic Algorithms:基于模糊逻辑进行推理,适用于处理不确定性和模糊性问题。

  18. Deep Reinforcement Learning (DRL):结合深度学习和强化学习,通过与环境的交互来自我学习最优路径。

这些算法可以单独使用,也可以组合使用,以适应不同的应用场景和提高路径规划的性能。随着技术的发展,新的算法和改进方法不断被提出,以解决更复杂的路径规划问题。

相关文章:

路径规划搜路算法有哪些?

路径规划搜索算法是帮助移动机器人或自动化系统在环境中从起点导航至终点的计算方法。以下是一些常见的路径规划搜索算法: Dijkstra算法:一种经典的最短路径搜索算法,适用于没有负权边的图。 A*算法:一种启发式搜索算法&#xff…...

Hadoop学习之hdfs的操作

Hadoop学习之hdfs的操作 1.将HDFS中的文件复制到本地 package com.shujia.hdfs;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.After; import org.junit.Before; import org.j…...

DBAPI怎么进行数据格式转换

DBAPI如何进行数据格式的转换 假设现在有个API,根据学生id查询学生信息,访问API查看数据格式如下 {"data":[{"name":"Michale","phone_number":null,"id":77,"age":55}],"msg"…...

Oracle JSON 函数详解与实战

Oracle 数据库提供了丰富的 JSON 函数集,使得开发者可以高效地处理 JSON 数据。本文将详细介绍这些函数,包括它们的语法、使用场景、具体示例,以及在实际项目中的应用。 文章目录 JSON_VALUE语法参数说明示例 JSON_QUERY语法示例 JSON_TABLE语…...

C#面:请解释转发与跳转的区别

在C#中,转发(forwarding)和跳转(jumping)是两种不同的控制流程操作。 转发 是指将控制权从一个方法或函数转移到另一个方法或函数。在转发中,程序会将当前的执行状态传递给另一个方法,并在该方…...

Java+IDEA+SpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码

JavaIDEASpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码 药物不良反应(Adverse Drug Reaction,ADR)是指在使用合格药品时,在正常的用法和用量下出现的与用药目的无关的有害反应。这些反应往往因药物种类、使用…...

linux系统模拟资源消耗的简单手段

当我们在做系统性能,稳定性,高可用等特殊场景的测试时,往往要对计算机的硬件资源做出比较苛刻的限制,因此需要最简便的办法增加CPU,内存,磁盘,网络等硬件环境的资源压力。下面介绍实现这些操作的…...

吉林大学软件工程简答题整理

1.6种软件过程模型列举,及优缺点(每个都从时间、质量、过程、本身特点去考虑) 瀑布模型 优点缺点V模型 优点:缺点: 原型模型 优点:演化模型 建增模型 优点缺点螺旋模型 优点缺点喷泉模型 RUP、敏捷工程、…...

爬山算法介绍

目录 1.概述 2.产生 3.定义 4.优缺点 5.应用示例 6.未来展望 7.示例代码 1.概述 爬山算法是一种简单的启发式搜索算法,从起始点开始,每次选择当前位置邻域内的最优解作为下一个位置,直到达到目标点或无法继续前进。爬山算法的基本思想…...

在linux中配置关于GFS创建各种卷以及卷组--配置实验

服务器的相关信息 服务器的相关信息 卷名称 卷类型 空间大小 Brick dis-volume 分布式卷 12 Node1(/e6)、node2(/e6) Stripe-volume 条带卷 10 Node1(/d5)、node2(/d5) Rep-volume 复制卷 5 Node3(/d5)、node4(/d5) Dis-stripe 分布式条带卷 12 Node1(/b3)、node2(/b3)、node(…...

安泰电子:使用高压放大器时有哪些需要注意的呢

随着科技的不断进步,高压放大器在各种科学实验、工程应用和产业生产中扮演着重要的角色。然而,由于高压放大器的特殊性,使用时需要特别小心和谨慎。下面将详细介绍使用高压放大器时需要注意的事项,以确保安全、稳定地进行实验和应…...

为什么大部分新手做抖音小店赚不到钱?

大家好,我是喷火龙。 今天来给大家聊聊,为什么大部分新手做抖店赚不到钱? 不知道大家想过这个问题没有,可能有些人把赚不到钱的原因归结于市场、或者平台、又或者运营技术以及做店经验。 但我觉得这些都不是重点,重…...

跳跃游戏(2)

问题描述 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 输入&#xff1…...

11.Redis之zset类型

1.zset类型基本介绍 有序描述的是:升序/降序 Set 集合 1.唯一 2. 无序 孙行者,行者孙, 者行孙 >同一只猴~~ List有序的 孙行者,行者孙, 者行孙 >不同的猴~~ zset 中的 member 仍然要求是唯一的!!(score 则可以重复) 排序的规则是啥? 给 zset 中的 member 同…...

Python怎样将PDF拆分成多个文件

在 Python 中,你可以使用 PyPDF2 库来拆分 PDF 文件。以下是一个简单的示例,演示如何将一个 PDF 文件拆分为多个单页 PDF 文件。 首先,你需要安装 PyPDF2 库。如果尚未安装,可以使用以下命令进行安装: pip install P…...

C语言-----前置++和后置++的不同

#include <stdio.h> int main() {int a, b, c;a 5;c a;b c, c, a, a;b a c;printf("a %d b %d c %d\n:", a, b, c);return 0; }/*1、逗号运算符的优先级比赋值运算符号的优先级低2、、的优先级比高3、多个号在一起的时候&#xff0c;其优先级为后置、、…...

685. 冗余连接 II

685. 冗余连接 II 问题描述 在本问题中&#xff0c;有根树指满足以下条件的 有向 图。该树只有一个根节点&#xff0c;所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点&#xff0c;而根节点没有父节点。 输入一个有向图&#xff0c;该…...

自养号测评是什么?亚马逊、沃尔玛、Target卖家如何建立自己的护城河?

近期有跨境卖家咨询我自养买家账号测评的事情&#xff0c;他们还是有不了解自养号测评的&#xff0c;所以珑哥觉得有必要再讲一下卖家测评的一些事情&#xff0c;之前文章也说过。这可能是跨境卖家运营的一个趋势。今天珑哥着重来介绍一下自养号测评 一、什么叫做自养号测评&a…...

计算机毕业设计 | SpringBoot招投标 任务发布网站(附源码)

1&#xff0c;绪论 在市场范围内&#xff0c;任务发布网站很受欢迎&#xff0c;有很多开发者以及其他领域的牛人&#xff0c;更倾向于选择工作时间、工作场景更自由的零工市场寻求零散单子来补贴家用。 如今市场上&#xff0c;任务发布网站鱼龙混杂&#xff0c;用户需要找一个…...

element el-table表格表头某一列表头文字或者背景修改颜色

效果如下 整体代码 &#xff0c;具体方法在最下面&#xff01; <el-table v-loading"listLoading" :data"sendReceivList" element-loading-text"Loading" border fit ref"tableList" :header-cell-class-name"addClass&quo…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...