LeetCode题练习与总结:二叉树的层序遍历Ⅱ--107
一、题目描述
给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
示例 1:

输入:root = [3,9,20,null,null,15,7] 输出:[[15,7],[9,20],[3]]
示例 2:
输入:root = [1] 输出:[[1]]
示例 3:
输入:root = [] 输出:[]
提示:
- 树中节点数目在范围
[0, 2000]内 -1000 <= Node.val <= 1000
二、解题思路
这个问题是关于如何对二叉树进行自底向上的层序遍历。我们可以使用一个队列来进行广度优先搜索(BFS),并使用一个变量来记录当前层的节点值。在遍历每一层的时候,我们使用一个双端队列(Deque)来存储当前层的节点值,这样我们就可以从双端队列的尾部开始遍历,从而实现自底向上的层序遍历。
算法步骤:
- 初始化一个空队列
queue用于BFS,以及一个空的双端队列deque用于存储当前层的节点值。 - 如果
root不为空,则将其加入queue。 - 初始化一个变量
level为0,用于标识当前层的奇偶性。 - 当
queue不为空时,进行以下操作: a. 获取当前层的节点数量size(即queue的长度)。 b. 遍历当前层的节点,对于每个节点: i. 从queue中移除节点,并将其值加入deque的头部(如果level为偶数)或尾部(如果level为奇数)。 ii. 如果该节点的左子节点不为空,将其加入queue。 iii. 如果该节点的右子节点不为空,将其加入queue。 c. 将deque转换为列表,并加入结果列表result。 d. 将level加1,清空deque。 - 返回结果列表
result。
三、具体代码
import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;public class Solution {public List<List<Integer>> levelOrderBottom(TreeNode root) {List<List<Integer>> result = new ArrayList<>();if (root == null) {return result;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);int level = 0;while (!queue.isEmpty()) {int size = queue.size();Deque<Integer> deque = new LinkedList<>();for (int i = 0; i < size; i++) {TreeNode node = queue.poll();if (node != null) {deque.offerLast(node.val);queue.offer(node.left);queue.offer(node.right);}}if (!deque.isEmpty()) {result.add(0, new ArrayList<>(deque));}}return result;}
}
四、时间复杂度和空间复杂度
1. 时间复杂度
levelOrderBottom函数会对每个节点进行一次操作,其中n是树中节点的数量。- 因此,总的时间复杂度是 O(n)。
2. 空间复杂度
- 空间复杂度主要取决于队列和双端队列中存储的节点数量。
- 在最坏的情况下,树是完全不平衡的,例如每个节点都只有左子节点或者只有右子节点,此时队列和双端队列中存储的节点数量最多,为 O(n)。
- 因此,总的空间复杂度是 O(n)。
综上所述,代码的时间复杂度是 O(n),空间复杂度也是 O(n),其中 n 是树中节点的数量。
五、总结知识点
-
队列(Queue)的使用:代码中使用了
LinkedList类作为Queue的实现,用于在BFS中存储待遍历的节点。队列遵循先进先出(FIFO)的原则。 -
递归:虽然代码中没有直接使用递归,但BFS本质上是一种递归的过程,通过循环模拟递归的调用栈。
-
双端队列(Deque)的使用:代码中使用了
LinkedList类作为Deque的实现,用于在每一层遍历时存储当前层的节点值。双端队列可以同时从两端添加或删除元素。 -
迭代与循环:使用
while循环来迭代遍历树的每一层,直到队列为空。 -
条件语句:使用
if-else语句来判断节点是否为空,以及判断队列是否为空。 -
数据结构转换:使用
ArrayList和LinkedList之间的转换,将Deque中的元素转换为一个List,然后添加到结果List中。 -
布尔变量的使用:使用布尔变量
level来标志当前层的奇偶性,并在每层遍历后取反。 -
树节点的定义:代码中使用了
TreeNode类来定义二叉树的节点,每个节点包含一个整数值和指向左右子节点的引用。 -
函数返回值:
levelOrderBottom函数返回一个包含多层的List<List<Integer>>,表示二叉树的自底向上的层序遍历结果。 -
边界条件的处理:在函数开始时检查
root是否为空,如果为空则直接返回一个空列表。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。
相关文章:
LeetCode题练习与总结:二叉树的层序遍历Ⅱ--107
一、题目描述 给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[…...
WIFI国家码设置的影响
记录下工作中关于国家码设置对WIFI的影响,以SKYLAB的SKW99和SDZ202模组为例进行说明。对应到日常,就是我们经常提及手机是“美版”“港版”等,它们的wifi国家码是不同的,各版本在wifi使用中遇到的各种情况与下面所述是吻合的。 现…...
2024年软考高项-信息系统管理师介绍-备考-考试内容-通过攻略
介绍 以下是计算机软件考试的资格设置,本文说的是高级资格中的信息系统项目管理师(简称"高项"),是比较热门和好考的选择,与中级的"系统集成项目管理工程师"有大部分的知识重叠交叉,中级考了"系统集成项…...
Python知识点复习
文章目录 Input & OutputVariables & Data typesPython字符串重复(字符串乘法)字符串和数字连接在一起print时,要强制类型转换int为str用input()得到的用户输入,是str类型,如果要以int形式计算的话,…...
GeoScene产品学习视频收集
1、易智瑞运营的极思课堂https://www.geosceneonline.cn/learn/library 2、历年易智瑞技术公开课视频资料 链接:技术公开课-易智瑞信息技术有限公司,GIS/地理信息系统,空间分析-制图-位置智能-地图 3、一些关于GeoScene系列产品和技术操作的视…...
51单片机的最小系统详解
51单片机的最小系统详解 1. 引言 在嵌入式系统中,51单片机被广泛应用于各种小型控制器和嵌入式开发板中。相信很多人都接触过51单片机,但是对于51单片机的最小系统却了解得不够深入。本文将从振荡电路、电源模块、复位电路、LED指示灯和调试接口五个方面详细介绍51单片机的…...
路径规划搜路算法有哪些?
路径规划搜索算法是帮助移动机器人或自动化系统在环境中从起点导航至终点的计算方法。以下是一些常见的路径规划搜索算法: Dijkstra算法:一种经典的最短路径搜索算法,适用于没有负权边的图。 A*算法:一种启发式搜索算法ÿ…...
Hadoop学习之hdfs的操作
Hadoop学习之hdfs的操作 1.将HDFS中的文件复制到本地 package com.shujia.hdfs;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.After; import org.junit.Before; import org.j…...
DBAPI怎么进行数据格式转换
DBAPI如何进行数据格式的转换 假设现在有个API,根据学生id查询学生信息,访问API查看数据格式如下 {"data":[{"name":"Michale","phone_number":null,"id":77,"age":55}],"msg"…...
Oracle JSON 函数详解与实战
Oracle 数据库提供了丰富的 JSON 函数集,使得开发者可以高效地处理 JSON 数据。本文将详细介绍这些函数,包括它们的语法、使用场景、具体示例,以及在实际项目中的应用。 文章目录 JSON_VALUE语法参数说明示例 JSON_QUERY语法示例 JSON_TABLE语…...
C#面:请解释转发与跳转的区别
在C#中,转发(forwarding)和跳转(jumping)是两种不同的控制流程操作。 转发 是指将控制权从一个方法或函数转移到另一个方法或函数。在转发中,程序会将当前的执行状态传递给另一个方法,并在该方…...
Java+IDEA+SpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码
JavaIDEASpringBoot药物不良反应ADR智能监测系统源码 ADR智能化监测系统源码 药物不良反应(Adverse Drug Reaction,ADR)是指在使用合格药品时,在正常的用法和用量下出现的与用药目的无关的有害反应。这些反应往往因药物种类、使用…...
linux系统模拟资源消耗的简单手段
当我们在做系统性能,稳定性,高可用等特殊场景的测试时,往往要对计算机的硬件资源做出比较苛刻的限制,因此需要最简便的办法增加CPU,内存,磁盘,网络等硬件环境的资源压力。下面介绍实现这些操作的…...
吉林大学软件工程简答题整理
1.6种软件过程模型列举,及优缺点(每个都从时间、质量、过程、本身特点去考虑) 瀑布模型 优点缺点V模型 优点:缺点: 原型模型 优点:演化模型 建增模型 优点缺点螺旋模型 优点缺点喷泉模型 RUP、敏捷工程、…...
爬山算法介绍
目录 1.概述 2.产生 3.定义 4.优缺点 5.应用示例 6.未来展望 7.示例代码 1.概述 爬山算法是一种简单的启发式搜索算法,从起始点开始,每次选择当前位置邻域内的最优解作为下一个位置,直到达到目标点或无法继续前进。爬山算法的基本思想…...
在linux中配置关于GFS创建各种卷以及卷组--配置实验
服务器的相关信息 服务器的相关信息 卷名称 卷类型 空间大小 Brick dis-volume 分布式卷 12 Node1(/e6)、node2(/e6) Stripe-volume 条带卷 10 Node1(/d5)、node2(/d5) Rep-volume 复制卷 5 Node3(/d5)、node4(/d5) Dis-stripe 分布式条带卷 12 Node1(/b3)、node2(/b3)、node(…...
安泰电子:使用高压放大器时有哪些需要注意的呢
随着科技的不断进步,高压放大器在各种科学实验、工程应用和产业生产中扮演着重要的角色。然而,由于高压放大器的特殊性,使用时需要特别小心和谨慎。下面将详细介绍使用高压放大器时需要注意的事项,以确保安全、稳定地进行实验和应…...
为什么大部分新手做抖音小店赚不到钱?
大家好,我是喷火龙。 今天来给大家聊聊,为什么大部分新手做抖店赚不到钱? 不知道大家想过这个问题没有,可能有些人把赚不到钱的原因归结于市场、或者平台、又或者运营技术以及做店经验。 但我觉得这些都不是重点,重…...
跳跃游戏(2)
问题描述 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 输入࿱…...
11.Redis之zset类型
1.zset类型基本介绍 有序描述的是:升序/降序 Set 集合 1.唯一 2. 无序 孙行者,行者孙, 者行孙 >同一只猴~~ List有序的 孙行者,行者孙, 者行孙 >不同的猴~~ zset 中的 member 仍然要求是唯一的!!(score 则可以重复) 排序的规则是啥? 给 zset 中的 member 同…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
