数据集005:螺丝螺母目标检测数据集(含数据集下载链接)
数据集简介
背景干净的目标检测数据集。
里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别
另附一个验证集合,有10张图片,eval.txt 描述图片中目标,格式和 train.txt 相同



部分代码
"""
训练常基于dark-net的YOLOv3网络,目标检测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = '0.82'
import uuid
import numpy as np
import time
import six
import math
import random
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs
import jsonfrom paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from PIL import Image, ImageEnhance, ImageDrawlogger = None
train_parameters = {"data_dir": "data/data6045","train_list": "train.txt","eval_list": "eval.txt","class_dim": -1,"label_dict": {},"num_dict": {},"image_count": -1,"continue_train": True, # 是否加载前一次的训练参数,接着训练"pretrained": False,"pretrained_model_dir": "./pretrained-model","save_model_dir": "./yolo-model","model_prefix": "yolo-v3","freeze_dir": "freeze_model","use_tiny": True, # 是否使用 裁剪 tiny 模型"max_box_num": 20, # 一幅图上最多有多少个目标"num_epochs": 1,"train_batch_size": 8, # 对于完整 yolov3,每一批的训练样本不能太多,内存会炸掉;如果使用 tiny,可以适当大一些"use_gpu": True,"yolo_cfg": {"input_size": [3, 448, 448], # 原版的边长大小为608,为了提高训练速度和预测速度,此处压缩为448"anchors": [7, 10, 12, 22, 24, 17, 22, 45, 46, 33, 43, 88, 85, 66, 115, 146, 275, 240],"anchor_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]]},"yolo_tiny_cfg": {"input_size": [3, 256, 256],"anchors": [6, 8, 13, 15, 22, 34, 48, 50, 81, 100, 205, 191],"anchor_mask": [[3, 4, 5], [0, 1, 2]]},"ignore_thresh": 0.7,"mean_rgb": [127.5, 127.5, 127.5],"mode": "train","multi_data_reader_count": 4,"apply_distort": True,"nms_top_k": 300,"nms_pos_k": 300,"valid_thresh": 0.01,"nms_thresh": 0.45,"image_distort_strategy": {"expand_prob": 0.5,"expand_max_ratio": 4,"hue_prob": 0.5,"hue_delta": 18,"contrast_prob": 0.5,"contrast_delta": 0.5,"saturation_prob": 0.5,"saturation_delta": 0.5,"brightness_prob": 0.5,"brightness_delta": 0.125},"sgd_strategy": {"learning_rate": 0.002,"lr_epochs": [30, 50, 65],"lr_decay": [1, 0.5, 0.25, 0.1]},"early_stop": {"sample_frequency": 50,"successive_limit": 3,"min_loss": 2.5,"min_curr_map": 0.84}
}def init_train_parameters():"""初始化训练参数,主要是初始化图片数量,类别数:return:"""file_list = os.path.join(train_parameters['data_dir'], train_parameters['train_list'])label_list = os.path.join(train_parameters['data_dir'], "label_list")index = 0with codecs.open(label_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]for line in lines:train_parameters['num_dict'][index] = line.strip()train_parameters['label_dict'][line.strip()] = indexindex += 1train_parameters['class_dim'] = indexwith codecs.open(file_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]train_parameters['image_count'] = len(lines)
数据集链接:螺丝螺母目标检测数据集(430张)
相关文章:
数据集005:螺丝螺母目标检测数据集(含数据集下载链接)
数据集简介 背景干净的目标检测数据集。 里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别 另附一个验证集合,有10张图片,e…...
Swift 类和结构体
类和结构体 一、结构体和类对比1、类型定义的语法2、结构体和类的实例3、属性访问4、结构体类型的成员逐一构造器 二、结构体和枚举是值类型三、类是引用类型1、恒等运算符2、指针 结构体和类作为一种通用而又灵活的结构,成为了人们构建代码的基础。你可以使用定义常…...
网络安全相关面试题(hw)
网络安全面试题 报错注入有哪些函数 updatexml注入 载荷注入 insert注入 updata注入 delete注入 extractvalue()注入 注入防御方法 涵数过滤 直接下载相关防范注入文件,通过incloud包含放在网站配置文件里面 PDO预处理,从PHP 5.1开始&…...
前端开发攻略---三种方法解决Vue3图片动态引入问题
目录 1、将图片放入public文件夹中 2、使用 /src/.... 路径开头 3、生成图片的完整URL地址(推荐) 1、将图片放入public文件夹中 使用图片:路径为 /public 开头 <template><div><img :src"/public/${flag ? 01 : 02}.jp…...
零售EDI:Target DVS EDI项目案例
Target塔吉特是美国一家巨型折扣零售百货集团,与全球供应商建立长远深入的合作关系,目前国内越来越多的零售产品供应商计划入驻Target。完成入驻资格审查之后,Target会向供应商提出EDI对接邀请,企业需要根据指示完成供应商EDI信息…...
AWS安全性身份和合规性之AWS Firewall Manager
AWS Firewall Manager是一项安全管理服务,可让您在AWS Organizations中跨账户和应用程序集中配置和管理防火墙规则。在创建新应用程序时,您可以借助Firewall Manager实施一套通用的安全规则,更轻松地让新应用程序和资源从一开始就达到合规要求…...
R实验 随机变量及其分布
实验目的: 掌握常见几种离散性随机变量及其分布在R语言中对应的函数用法;掌握常见几种连续性随机变量及其分布在R语言中对应的函数用法;掌握统计量的定义及统计三大抽样分布在R语言中对应的函数用法。 实验内容: (习题…...
rapidssl泛域名https600元一年
泛域名https证书也可以称之为通配符https证书,指的是可以用一张https证书为多个网站(主域名以及主域名下的所有子域名网站)传输数据加密,并且提供身份认证服务的数字证书产品。RapidSSL旗下的泛域名https证书性价比高,申请速度快,…...
月薪5万是怎样谈的?
知识星球(星球名:芯片制造与封测技术社区,星球号:63559049)里的学员问:目前是晶圆厂的PE,但是想跳槽谈了几次薪水,都没法有大幅度的增长,该怎么办?“学得文武…...
linux下宝塔负载100%解决方法
今天发现服务器宝塔面板负载居然是100% 但是cpu 和内存其实并不高 通过命令查看主机 uptime 中load average 居然高达18.23 看来负载是真的高了 通过vmstat 看看具体问题 procs: r 表示运行和等待CPU时间片的进程数,这个值如果长期大于系统CPU个数…...
【C++】STL快速入门基础
文章目录 STL(Standard Template Library)1、一般介绍2、STL的六大组件2.1、STL容器2.2、STL迭代器2.3、相关容器的函数vectorpairstringqueuepriority_queuestackdequeset, map, multiset, multimapunordered_set, unordered_map, unordered_multiset, …...
面向对象编程的魅力与实战:以坦克飞机大战为例
新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、面向对象编程的引言 二、理解面向对象编程与面向过程编程的差异 三、创建类与对象&…...
二叉树——堆的实现
一.前言 前面我们讲解了二叉树的概念以及二叉树的存储结构:https://blog.csdn.net/yiqingaa/article/details/139224974?spm1001.2014.3001.5502 今天我们主要讲讲二叉树的存储结构,以及堆的实现。 二.正文 1.二叉树的顺序结构及实现 1.1二叉树的顺序…...
【Spring】DynamicDataSourceHolder 动态数据源切换
【Spring】DynamicDataSourceHolder 动态数据源切换 常见场景常见工具一、AbstractRoutingDataSource1.1、 定义 DynamicDataSourceHolder1.2、 配置动态数据源1.3、 在Spring配置中定义数据源1.4、在业务代码中切换数据源 二、Dynamic Datasource for Spring Boot2.1. 添加依赖…...
LeeCode 3165 线段树
题意 传送门 LeeCode 3165 不包含相邻元素的子序列的最大和 题解 考虑不含相邻子序列的最大和,在不带修改的情况下容易想到,以最后一个元素是否被选取为状态进行DP。从线性递推的角度难以处理待修改的情况。 从分治的角度考虑,使用线段树…...
修改元组元素
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 场景模拟:伊米咖啡馆,由于麝香猫咖啡需求量较大,库存不足,店长想把它换成拿铁咖啡。 实例08 将麝香猫…...
【模版方法设计模式】
文章目录 模板方法设计模式模板方法的设计原则模板方法设计模式组成部分代码实现抽象类实现具体实现类执行 模板方法设计模式 模版方法设计模式(Template Method Pattern)是一种行为设计模式,它定义了一个操作中的算法骨架,而将一…...
rust语言初识
程序设计实践课上水一篇ing 来源:rust基础入门-1.初识rust-酷程网 (kucoding.com) rust作为一名新兴语言,与go又有些许不同,因为它的目标是对标系统级开发,也就是C、C这两位在编程界的位置。比如我们最常用的windows系统&#x…...
知识图谱数据预处理笔记
知识图谱数据预处理笔记 0. 引言1. 笔记1-1. \的转义1-2. 特殊符号的清理1-3. 检查结尾是否正常1-4. 检查<>是否存在1-5. 两端空格的清理1-6. 检查object内容长时是否以<开始 0. 引言 最近学习知识图谱,发现数据有很多问题,这篇笔记记录遇到的…...
Unity面试八股文之基础篇
文章目录 前言1. Unity的生命周期加载第一个场景Editor在第一次帧更新之前帧之间更新顺序协程销毁对象时退出时 2. Unity 协程和线程,进程的区别3. 本地坐标系 世界坐标系4. 碰撞器和触发器的区别后话 前言 开设这个栏目的博文会写一些有关unity的面试题目,在面试的…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践
在电商行业蓬勃发展的当下,多平台运营已成为众多商家的必然选择。然而,不同电商平台在商品数据接口方面存在差异,导致商家在跨平台运营时面临诸多挑战,如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...
2025-05-08-deepseek本地化部署
title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek:小白也能轻松搞定! 如何给本地部署的 DeepSeek 投喂数据,让他更懂你 [实验目的]:理解系统架构与原…...
简单介绍C++中 string与wstring
在C中,string和wstring是两种用于处理不同字符编码的字符串类型,分别基于char和wchar_t字符类型。以下是它们的详细说明和对比: 1. 基础定义 string 类型:std::string 字符类型:char(通常为8位)…...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...
【threejs】每天一个小案例讲解:创建基本的3D场景
代码仓 GitHub - TiffanyHoo/three_practices: Learning three.js together! 可自行clone,无需安装依赖,直接liver-server运行/直接打开chapter01中的html文件 运行效果图 知识要点 核心三要素 场景(Scene) 使用 THREE.Scene(…...
