关于C++智能指针复习总结
RAII(Resource Acquisition Is Initialization): 资源获得即初始化
利用对象生命周期来控制程序的资源(将资源交给对象处理) 智能指针利用了该思想
- 将资源交给一个对象, 初始化资源(可以是指针或者等等资源), 释放交给析构函数
因为析构函数无论是什么场景, 对象销毁时一定会被调用, 故此资源一定会被释放
智能指针
使用了RAII的思想管理动态内存分配的一个工具,以减少内存泄露的风险。
在使用上像一个普通指针一样操作(*和->)
头文件<memory.h>
auto_ptr(C++11及以后已被弃用)
- 拷贝→ 资源管理权转移(会导致原拷贝对象悬空)
即将原先的智能指针内容转换到新的智能指针内 - 该智能指针属于一个反面教材
template<typename T>
class auto_ptr { T* ptr;
public: explicit auto_ptr(T* p = nullptr) : ptr(p) {} ~auto_ptr() { delete ptr; } auto_ptr(const auto_ptr& other) : ptr(other.ptr) { other.ptr = nullptr; // 所有权转移!这是有问题的部分。 } auto_ptr& operator=(const auto_ptr& other) { if (this != &other) { delete ptr; // 删除当前对象所拥有的资源 ptr = other.ptr; // 获取新资源的所有权 other.ptr = nullptr; // 将原所有者的指针设为 nullptr } return *this; } T& operator*() const { return *ptr; } T* operator->() const { return ptr; }
};
unique_ptr
一个智能指针只能管理一个指针对象(不支持赋值和拷贝)
- 从类的语法角度将拷贝构造和赋值用delete关键字删除, 使得无法复制
- 并没有从根上解决auto_ptr的问题
template<typename T>
class unique_ptr { T* ptr;
public: unique_ptr(T* p = nullptr) : ptr(p) {} ~unique_ptr() { delete ptr; } // 手动禁止拷贝和赋值unique_ptr(const unique_ptr& other) = delete; unique_ptr& operator=(const unique_ptr& other) = delete; // 移动构造和赋值unique_ptr(unique_ptr&& other) noexcept : ptr(other.ptr) { other.ptr = nullptr; } unique_ptr& operator=(unique_ptr&& other) noexcept { if (this != &other) { delete ptr; ptr = other.ptr; other.ptr = nullptr; } return *this; } T& operator*() const { return *ptr; } T* operator->() const { return ptr; } explicit operator bool() const { return ptr != nullptr; }
};
shared_ptr
可以表示用多个智能指针管理同一个指针对象(支持赋值和拷贝)
-
使用引用计数来实现
- 每个对象生成时计数++
- 对象释放时计数–
- 计数为0时则释放所管理的资源
-
实现shared_ptr
-
不能使用静态成员变量, 如此静态成员变量是属于整个类, 所有的智能指针对象都会共享该计数(我们应该不同的智能指针对象拥有不同的计数)
-
应在shared_ptr中添加一个计数指针(指针保存的为地址, 可以在不同对象内传递)在构造中初始化为1, 拷贝时将计数也拷贝+1,在析构时将对应的计数指针–即可
template<typename T> class shared_ptr { T* ptr; int* count; public: shared_ptr(T* p = nullptr) : ptr(p), count(new int(1)) {} shared_ptr(const shared_ptr& other) : ptr(other.ptr), count(other.count) { ++(*count); } ~shared_ptr() { if (--(*count) == 0) { delete ptr; delete count; } } shared_ptr& operator=(const shared_ptr& other) { if (this != &other) { if (--(*count) == 0) { delete ptr; delete count; } ptr = other.ptr; count = other.count; ++(*count); } return *this; } T& operator*() const { return *ptr; } T* operator->() const { return ptr; } }; -
shared_ptr的问题
-
循环引用(无法在内部解决), 需要使用weak_ptr解决
weak_ptr主要用shared_ptr构造, 用于解决循环引用问题- 当一个自定义类型内也存在多个shared_ptr时, 两个及以上个自定义类型通过shared_ptr互相指向时则会出现循环引用的问题
- weak_ptr不会增加对应shared_ptr的引用计数(即不参与资源管理)
但是仍旧可以像指针一样使用weak_ptr(可以访问和修改资源)
struct Node {int _val;//成员包含shared_ptr类型, 去管理其它对象时会对应增加计数/*std::shared_ptr<Node> _next;std::shared_ptr<Node> _prev;*///管理其它对象时不会增加对应计数std::weak_ptr<Node> _next;std::weak_ptr<Node> _prev;~Node(){cout << "~Node" << endl;} };// 循环引用 -- weak_ptr不是常规智能指针,没有RAII,不支持直接管理资源 // weak_ptr主要用shared_ptr构造,用来解决shared_ptr循环引用问题 void test_shared_ptr2() {/*std::shared_ptr<Node> n1(new Node);std::shared_ptr<Node> n2(new Node);//通过成员进行了相互引用, 则彼此"缠绕"了起来//n1的_next释放需要依赖指针类型的析构, 结点的析构需要依赖所在对象的析构, 但所在对象的析构又依赖于n2的_prev的析构(当_prev析构了, node1才会被析构); 反之类似, 故彼此缠绕, 形成循环引用n1->_next = n2;//增加了node2的计数n2->_prev = n1;//增加了node1的计数*/std::shared_ptr<Node> n1(new Node);std::shared_ptr<Node> n2(new Node);cout << n1.use_count() << endl;cout << n2.use_count() << endl;n1->_next = n2;n2->_prev = n1;cout << n1.use_count() << endl;cout << n2.use_count() << endl; }
weak_ptr
一般都作为shared_ptr的辅助指针, 解决其循环引用的问题, 它只会指向资源, 而不参与管理资源(即不会增加引用计数)
删除器
关于new和new[]生成的指针对应delete和delete[]的问题(是否匹配使用, 释放空间)
- 为什么存在删除器 ?
- new和new[]底层都是调用了operator new函数, 然后调用了malloc以及对应对象的构造函数,但区别在于new[]在malloc时多malloc了4个字节存在首部(用于delete[]时对应找到malloc了多少个对象空间)
- delete和delete[]底层都是调用了operator delete, 然后调用了对应对象的析构和free,区别在于delete调用了一次析构和一次free, 但delete[]调用了n次析构和1次free
但在析构时,指针会往前偏移4个字节找到总构造的对象个数所对应的空间, 然后依次调用析构和free - 如果是new[]出来的对象使用delete释放时, 由于delete不会进行偏移, 会导致free的位置不正确, 导致程序崩溃
- 定制删除器
- 仿函数
- lambda表达式
- 不同的智能指针对应的删除器
- shared_ptr可在构造函数内传入仿函数或者lambda表达式
- unique_ptr只能从模板参数传入
相关文章:
关于C++智能指针复习总结
RAII(Resource Acquisition Is Initialization): 资源获得即初始化 利用对象生命周期来控制程序的资源(将资源交给对象处理) 智能指针利用了该思想 将资源交给一个对象, 初始化资源(可以是指针或者等等资源), 释放交给析构函数 因为析构函数无论是什么场景, 对象销毁时一定会…...
Prometheus Operator创建告警规则并接入钉钉报警
prometheus之钉钉报警 前言1. 添加prometheus报警规则1.2 添加自定义报警规则文件 2. 配置钉钉报警2.2 部署dingding插件 3. 编写alertmanager配置文件 前言 在kubenetes上安装了kube-promethues(包含Prometheus Operator),程序正常跑起来了,…...
Word整理论文参考文献
1.安装Zotero软件 2.安装Zotero的Chrome网站插件,并将插件固定到浏览器 3.安装Word的Zotero插件 4.在DBLP网站https://dblp.org/search 搜索需要添加的参考文献->点击BibTex->点击网页右上角的Zotero符号(即第二步所指的符号)->至…...
计算机网路概述
目录 计算机网络的概念 计算机网络的定义: 计算机网络的组成: 终端系统/资源子网 通信子网 计算机网络的类型 按照拓扑分类编辑 按照范国分类: 按传输方式进行分类 计算机网络体系结构 传输方式 按照传输方向区分 按照传输对象…...
832. 翻转图像 - 力扣
1. 题目 给定一个 n x n 的二进制矩阵 image ,先 水平 翻转图像,然后 反转 图像并返回 结果 。 水平翻转图片就是将图片的每一行都进行翻转,即逆序。 例如,水平翻转 [1,1,0] 的结果是 [0,1,1]。 反转图片的意思是图片中的 0 全部被…...
mumu 模拟器安装
1.下载安装 下载地址 Win 历史版本:http://mumu.163.com/update/win/Mac 历史 版本:http://mumu.163.com/20200515/25905_880858.html 2.设置为竖屏 在设置中心--界面设置页面设置宽720,高1280,DPI为240,如下图所示。…...
opencv实现图片的膨胀腐蚀
opencv实现图片的膨胀腐蚀 在OpenCV中,膨胀和腐蚀是两种基本的图像处理操作,通常用于二值图像中以提取特定的特征。它们是基于图像的形态学操作,使用一个称为结构元素或核的模板来改变图像的形状。 下面是如何使用OpenCV实现图片的膨胀和腐…...
[AIGC] Java常用的JSON库及简单示例
Java常用的JSON库及简单示例 在Java的世界里,JSON库广泛用于日常开发工作,本文将介绍几个常用的JSON库并配以简单的示例代码。 1. Gson Gson是Google提供的一个用来在Java对象和JSON数据之间进行转换的Java库。 它有一定的学习曲线,但一旦熟…...
Linux shell编程学习笔记50:who命令
0 前言 2024年的网络安全检查又开始了,对于使用基于Linux的国产电脑,我们可以编写一个脚本来收集系统的有关信息。比如,我们可以使用who命令来收集当前已登陆系统的用户信息,当前运行级别等信息。 1. who命令 的功能、格式和选项…...
vue使用webscoket
1. 创建 WebSocket 连接 首先,你需要在你的 Vue 组件中创建一个 WebSocket 连接。通常,这会在组件的 created 或 mounted 生命周期钩子中完成。 created() {this.socket new WebSocket(wss://your-websocket-url);this.socket.onopen () > {conso…...
第18章-综合以上功能 基于stm32的智能小车(远程控制、避障、循迹) 基于stm32f103c8t6/HAL库/CubeMX/超详细,包含代码讲解和原理图
这个是全网最详细的STM32项目教学视频。 第一篇在这里: 视频在这里 STM32智能小车V3-STM32入门教程-openmv与STM32循迹小车-stm32f103c8t6-电赛 嵌入式学习 PID控制算法 编码器电机 跟随 第18章-综合以上功能 18-按键和app按钮切换功能 根据上面介绍,我们的模式可…...
java并发工具类都有哪些
Java中的并发工具类包括: CountDownLatch CountDownLatch允许一个或多个线程等待其他线程完成某些操作。它通常用于线程间的同步,例如在一个线程完成其工作后通知其他线程继续执行。 CyclicBarrier CyclicBarrier是一个同步辅助类,它允许一…...
偏微分方程算法之抛物型方程差分格式编程示例一
目录 一、研究问题 二、C++代码 三、结果分析 一、研究问题 从本节开始将对具体的抛物型偏微分问题算例进行C++编程,以加深对抛物型偏微分方程差分格式构造的理解和应用。 采用向前欧拉格式计算抛物型方程初边值问题:...
数据结构—栈(C语言实现)
文章目录 前言一、栈的概念二、栈的代码实现Stack.hStack.c 三、使用栈解决有效的括号问题总结 前言 小伙伴们,大家好哇!!欢迎来到我的博客! 今天来分享一下另外一种数据结构—栈。主要包括栈的基本概念与其代码实现,…...
JVM学习-垃圾回收器(一)
垃圾回收器 按线程数分类 串行垃圾回收器 串行回收是在同一时间段内只允许有一个CPU用于执行垃圾回收操作,此时工作线程被暂停,直至垃圾收集工作结束 在诸如单CPU处理器或者较小的应用内存等硬件平台不是特别优越的场合,串行回收器的性能表…...
dolphinscheduler standalone安装
官方文档:https://dolphinscheduler.apache.org/en-us/docs/3.1.3/guide/installation/standalone 1.安装(以放在/home为例) 下载见:https://download.csdn.net/download/taotao_guiwang/89311365 tar -xvzf apache-dolphinsche…...
力扣hot 100:49. 字母异位词分组(python C++)
目录 题目描述:题解(python):(方法一:排序)代码解析代码运行解析 题解(C):(方法一:排序)代码解析&运行解析 原题目链接…...
男士内裤什么材质的好?推荐男士内裤的注意事项
天气已经逐渐热了起来,广大男士们在夏天难免会出一身的汗,不少男士朋友都觉得一些吸湿性、透气性不好的内裤会在夏天穿着很不适,想挑选一些比较适合夏天的男士内裤,但现在的男士内裤品牌和材质分类却比较多,看得大家眼…...
Python操作MySQL数据库的工具--sqlalchemy
文章目录 一、pymysql和sqlalchemy的区别二、sqlalchemy的详细使用1.安装库2.核心思想3.整体思路4.sqlalchemy需要连接数据库5.使用步骤1.手动提前创建数据库2.使用代码创建数据表3.用代码操作数据表3.1 增加数据3.2 查询数据3.3 删除数据3.4 修改数据 一、pymysql和sqlalchemy…...
【算法】排序
排序算法在信息学非常常用。Hello!大家好,我是学霸小羊,今天讲几个排序算法。 1.“打擂台”排序 思路:a[ i ]和a[ j ]打擂台(i<j)。 这个方法简单易懂,只需要看看需不需要交换。按从大到小…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
