当前位置: 首页 > news >正文

ResNet 学习

一. 残差块与残差层

        简单来说,残差块是构成残差层的基本单元,而残差层则是由多个残差块组成的。在ResNet中,通常会堆叠多个残差层来构建深度模型。

(一).残差块(Residual Block)

        这是ResNet的基本构建单元。一个残差块通常包含两个或三个卷积层(加上激活函数和批量归一化),然后将这个卷积操作的输出与输入直接相加。这种设计可以帮助解决深度神经网络训练过程中的梯度消失问题。

class Bottleneck(nn.Module):#这个类实现了一个残差块(Residual Block),这是典型的ResNet的"Bottleneck"设计。expansion = 4#表示输出特征图的通道数是输入特征图的通道数的4倍。def __init__(self, inplanes, planes, stride=1, downsample=None):super(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(planes * 4)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stride#stride步长def forward(self, x):residual = x#目的是保存输入x的原始值,以便在后面的计算中与卷积层的输出相加。out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:residual = self.downsample(x)out += residualout = self.relu(out)return out

在ResNet(残差网络)的设计中,self.downsample通常是一个卷积层,用于改变输入数据的维度(例如,改变通道数或者空间尺寸),以便与主路径上卷积层的输出匹配。

如果self.downsample被定义了(即self.downsample is not None),那么输入数据x会通过self.downsample处理,然后作为残差连接添加到主路径上卷积层的输出上。这样,即使主路径上的卷积层改变了数据的维度,也能保证残差连接的输入和输出的维度是匹配的,从而可以进行相加。

(二).残差层(Residual Layer)

        这是由多个残差块串联组成的。在一个残差层中,输入数据首先通过一个残差块,然后输出被用作下一个残差块的输入,以此类推。每个残差层的输出通道数通常是固定的,但是可以通过调整残差块中卷积层的滤波器数量来改变。

    def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)

        在ResNet(残差网络)的设计中,每个残差层(Residual Layer)由多个残差块(Residual Block)组成。在每个残差层中,第一个残差块可能会改变输入的通道数和空间尺寸(宽度和高度),但是剩余的残差块都会保持通道数和空间尺寸不变。

        在PyTorch中,nn.Sequential 是一个容器模块,它包含了一系列子模块,这些子模块按照它们在构造函数中被传入的顺序进行排列。当 nn.Sequential 的 forward 方法被调用时,这些子模块会按照它们的排列顺序依次执行。

二.加载预训练模型参数

    def load_param(self, model_path):param_dict = torch.load(model_path)for i in param_dict:if 'fc' in i:continueself.state_dict()[i].copy_(param_dict[i])
  1. param_dict = torch.load(model_path):使用 PyTorch 的 torch.load() 函数从指定的文件中加载模型参数。这些参数被保存在一个字典中,字典的键是参数的名称,值是参数的值。

  2. for i in param_dict::遍历加载的参数字典。

  3. if 'fc' in i: continue:如果当前参数的名称中包含 'fc',则跳过这个参数。这通常用于在加载参数时跳过全连接层(Fully Connected layer,简称fc)的参数。

  4. self.state_dict()[i].copy_(param_dict[i]):将加载的参数复制到当前模型的对应参数中。self.state_dict() 是获取当前模型的参数字典,[i] 是获取对应的参数,copy_ 函数是将加载的参数复制到当前参数中。

相关文章:

ResNet 学习

一. 残差块与残差层 简单来说,残差块是构成残差层的基本单元,而残差层则是由多个残差块组成的。在ResNet中,通常会堆叠多个残差层来构建深度模型。 (一).残差块(Residual Block) 这是ResNet的基本构建单元。一个残差块…...

前端React老项目打包caniuse-lite报错解决思路

1、下载项目,先更新.npmrc文件: registryhttp://registry.npmmirror.com 2、安装依赖,本地启动,运行正常,但直接提交代码线上打包时会报错: “ 未找到相关的合并请求。” 打开日志页面,报错信息…...

【全开源】优校管理系统支持微信小程序+微信公众号+H5

概述 优校管理系统(简称优校管)是基于FastAdmin和ThinkPHP进行开发的中小学信息化管理系统,拥有PC版、UniAPP版(高级授权)。支持微信小程序、H5等多平台,主要用于信息管理、教学管理、素养评价,支持多个学校(标准授权限5个,高级授…...

Python条件分支与循环

大家好,当涉及到编写高效和灵活的程序时,条件分支和循环是 Python 中至关重要的概念。它们允许我们根据不同的条件执行不同的代码块,或者重复执行一组语句。条件分支和循环是测试开发工程师在日常工作中经常使用的工具,无论是编写…...

AI手语研究数据集;视频转视频翻译和风格化功能如黏土动画;AI检测猫咪行为;开放源码的AI驱动搜索引擎Perplexica

✨ 1: Prompt2Sign 多语言手语数据集,便捷高效用于手语研究。 Prompt2Sign 是一个全面的多语言手语数据集,旨在通过工具自动获取和处理网络上的手语视频。该数据集具有高效、轻量的特点,旨在减少先前手语数据集的不足之处。该数据集目前包含…...

四川景源畅信:新人做抖店的成本很高吗?

随着社交媒体的兴起,抖音成为了一个新兴的电商平台——抖店。不少创业者和商家看中了其庞大的用户基础,想要通过开设抖店来拓展销路。然而,对于刚入行的新手来说,成本问题总是让人犹豫不决。究竟新人做抖店的成本高不高?本文将围…...

ChatGPT原创指令大全(持续更新)

随着ChatGPT在互联网上的使用越来越多,但很多人在使用ChatGPT的过程中会觉得得到的答案并不是很精准。究其原因其实是你给它的命令不够准确、不够到位。实际现在网上已经很多关于ChatGPT的网站,可以快速生成带有快捷键的ChatGPT指令。但是对于不熟悉Chat…...

Java实现对PDF、纵向、横向页面添加自定义水印功能

Java实现对PDF、纵向、横向页面添加自定义水印 效果图 -- 纵向 页面PDF使用到JAR Maven依赖版本效果图 -- 横向页面PDF 效果图 – 纵向 页面PDF 代码如下&#xff1a; 使用到JAR Maven依赖版本 <dependency><groupId>org.apache.pdfbox</groupId><artifa…...

设计模式15——享元模式

写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用&#xff0c;主要是下面的UML图可以起到大作用&#xff0c;在你学习过一遍以后可能会遗忘&#xff0c;忘记了不要紧&#xff0c;只要看一眼UML图就能想起来了。同时也请大家多多指教。 享元模式&#xff08;Flyweigh…...

多模态中的模态有哪些

“多模态”这个名字中的“模态”&#xff08;modality&#xff09;&#xff0c;指的是不同的数据类型或信息源。在多模态大模型中&#xff0c;常见的模态包括&#xff1a; 文本模态&#xff1a; 包括自然语言文本、语音识别文本等。 图像模态&#xff1a; 指图像数据&#xff…...

Java练习题(八)

36.关于抽象类叙述正确的是&#xff1f; (B ) A.抽象类不能实现接口 B.抽象类必须有“abstract class”修饰 C.抽象类必须包含抽象方法 D.抽象类也有类的特性&#xff0c;可以被实例化 37.以下说法错误的是&#xff08;C&#xff09; A.数组是一个对象 B.数组不是一种原…...

Linux文本文件管理003

★排序、去重、统计★ 1&#xff09;排序 sort -n按照数值排序 -r降序排列 2&#xff09;去重 uniq 过滤相邻、重复的行 -c 对重复行计数 3&#xff09;统计 wc 统计文件中的字节数、单词数、行数 -l 显示行数 今天通过使用grep、awk、cut指令和上面几个选项提取文本文件…...

uniapp Androud 离线打包升级APK,覆盖安装不更新问题

Android 打包时在assets/data/dcloud_control.xml文件中&#xff0c;如果配置debug"true" syncDebug"true"&#xff0c;则consle打印有效&#xff0c;不然没有打印数据 <hbuilder debug"true" syncDebug"true"> <apps> …...

【算法实战】每日一题:设计一个算法,用最少数量的矩形覆盖一系列宽度为d、高度为w的矩形,且使用矩形不能超出边界

题目 设计一个算法&#xff0c;用最少数量的矩形覆盖一系列宽度为d、高度为w的矩形建筑物侧墙&#xff0c;且矩形不能超出边界。 核心思路 考虑这种结构 前面递增后面一个与前面的某个高度一致&#xff0c;这时候考虑最下面的覆盖&#xff08;即都是从最下面向上覆盖&#…...

外贸仓库管理软件:海外仓效率大幅度提升、避免劳动力积压

随着外贸业务的不断发展&#xff0c;如何高效管理外贸仓库&#xff0c;确保货物顺利流转&#xff0c;订单顺利处理&#xff0c;就变得非常重要。 现在通常的解决方案都是通过引入外贸仓库管理软件&#xff0c;也就是我们常说的海外仓WMS系统来解决。 今天我们就系统的探讨一下…...

6.8 LIBBPF API(七,bpf_core_read.h 函数,定义,枚举)

一,函数 void * bpf_rdonly_cast (const void *obj, __u32 btf_id) __ksym __weak 二,定义 __CORE_RELO(src, field, info) __builtin_preserve_field_info((src)->field,BPF_FIELD_##info) __CORE_BITFIELD_PROBE_READ(dst, src, fld) bpf_probe_read_kernel( \ (v…...

电脑卸载linux安装windows后每次开机都出现grub

原因分析 这是因为电脑硬盘中还存在linux系统的引导程序&#xff0c;并且启动顺序还在windows之前&#xff0c;有时候通过bios根本找不到它的存在&#xff0c;以至于每次windows开机出现grub之后都要输入exit退出linux的引导之后才能使得电脑进入windows&#xff0c;这个有时会…...

总结 HTTPS 的加密流程

一、前言 http是为了解决http存在的问题而在http基础上加入了SSL/TSL&#xff0c;在HTTP/2中TCP三次握手后会进入SSL/TSL握手&#xff0c;当SSL/TSL建立链接后&#xff0c;才会进行报文的传输。 二、HTTPS的混合加密 我们先来认识密钥&#xff1a; 密钥是用于加密和解密数据…...

Spring的FactoryBean多例问题

关于spring bean&#xff0c;我们了解的最多的还是单例&#xff0c;而多例bean,除了平时我们自己new的那些多实例外&#xff08;但不属于IOC管理了&#xff09;&#xff0c;几乎很少能用到&#xff0c;而在spring 层面&#xff0c;FactoryBean刚好是多例的一个体现&#xff0c;…...

[nextjs]推荐几个很好看的模板网站

最近在做网站,折腾了 vue 框架,然后发现了 nextjs 框架,感觉这个做出来的网站配色很好看,然后又开始研究这个 网站配色好看是因为用的 tailwindcss,找网站过程中,发现了几个很好看的模板网站,在这里推荐下,或许你也能用得上 推荐第一个网站是: https://tailspark.co/ 有组件,也…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...