ResNet 学习
一. 残差块与残差层
简单来说,残差块是构成残差层的基本单元,而残差层则是由多个残差块组成的。在ResNet中,通常会堆叠多个残差层来构建深度模型。
(一).残差块(Residual Block)
这是ResNet的基本构建单元。一个残差块通常包含两个或三个卷积层(加上激活函数和批量归一化),然后将这个卷积操作的输出与输入直接相加。这种设计可以帮助解决深度神经网络训练过程中的梯度消失问题。
class Bottleneck(nn.Module):#这个类实现了一个残差块(Residual Block),这是典型的ResNet的"Bottleneck"设计。expansion = 4#表示输出特征图的通道数是输入特征图的通道数的4倍。def __init__(self, inplanes, planes, stride=1, downsample=None):super(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(planes * 4)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stride#stride步长def forward(self, x):residual = x#目的是保存输入x的原始值,以便在后面的计算中与卷积层的输出相加。out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:residual = self.downsample(x)out += residualout = self.relu(out)return out
在ResNet(残差网络)的设计中,self.downsample通常是一个卷积层,用于改变输入数据的维度(例如,改变通道数或者空间尺寸),以便与主路径上卷积层的输出匹配。
如果self.downsample被定义了(即self.downsample is not None),那么输入数据x会通过self.downsample处理,然后作为残差连接添加到主路径上卷积层的输出上。这样,即使主路径上的卷积层改变了数据的维度,也能保证残差连接的输入和输出的维度是匹配的,从而可以进行相加。
(二).残差层(Residual Layer)
这是由多个残差块串联组成的。在一个残差层中,输入数据首先通过一个残差块,然后输出被用作下一个残差块的输入,以此类推。每个残差层的输出通道数通常是固定的,但是可以通过调整残差块中卷积层的滤波器数量来改变。
def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)
在ResNet(残差网络)的设计中,每个残差层(Residual Layer)由多个残差块(Residual Block)组成。在每个残差层中,第一个残差块可能会改变输入的通道数和空间尺寸(宽度和高度),但是剩余的残差块都会保持通道数和空间尺寸不变。
在PyTorch中,nn.Sequential 是一个容器模块,它包含了一系列子模块,这些子模块按照它们在构造函数中被传入的顺序进行排列。当 nn.Sequential 的 forward 方法被调用时,这些子模块会按照它们的排列顺序依次执行。
二.加载预训练模型参数
def load_param(self, model_path):param_dict = torch.load(model_path)for i in param_dict:if 'fc' in i:continueself.state_dict()[i].copy_(param_dict[i])
-
param_dict = torch.load(model_path):使用 PyTorch 的torch.load()函数从指定的文件中加载模型参数。这些参数被保存在一个字典中,字典的键是参数的名称,值是参数的值。 -
for i in param_dict::遍历加载的参数字典。 -
if 'fc' in i: continue:如果当前参数的名称中包含 'fc',则跳过这个参数。这通常用于在加载参数时跳过全连接层(Fully Connected layer,简称fc)的参数。 -
self.state_dict()[i].copy_(param_dict[i]):将加载的参数复制到当前模型的对应参数中。self.state_dict()是获取当前模型的参数字典,[i]是获取对应的参数,copy_函数是将加载的参数复制到当前参数中。
相关文章:
ResNet 学习
一. 残差块与残差层 简单来说,残差块是构成残差层的基本单元,而残差层则是由多个残差块组成的。在ResNet中,通常会堆叠多个残差层来构建深度模型。 (一).残差块(Residual Block) 这是ResNet的基本构建单元。一个残差块…...
前端React老项目打包caniuse-lite报错解决思路
1、下载项目,先更新.npmrc文件: registryhttp://registry.npmmirror.com 2、安装依赖,本地启动,运行正常,但直接提交代码线上打包时会报错: “ 未找到相关的合并请求。” 打开日志页面,报错信息…...
【全开源】优校管理系统支持微信小程序+微信公众号+H5
概述 优校管理系统(简称优校管)是基于FastAdmin和ThinkPHP进行开发的中小学信息化管理系统,拥有PC版、UniAPP版(高级授权)。支持微信小程序、H5等多平台,主要用于信息管理、教学管理、素养评价,支持多个学校(标准授权限5个,高级授…...
Python条件分支与循环
大家好,当涉及到编写高效和灵活的程序时,条件分支和循环是 Python 中至关重要的概念。它们允许我们根据不同的条件执行不同的代码块,或者重复执行一组语句。条件分支和循环是测试开发工程师在日常工作中经常使用的工具,无论是编写…...
AI手语研究数据集;视频转视频翻译和风格化功能如黏土动画;AI检测猫咪行为;开放源码的AI驱动搜索引擎Perplexica
✨ 1: Prompt2Sign 多语言手语数据集,便捷高效用于手语研究。 Prompt2Sign 是一个全面的多语言手语数据集,旨在通过工具自动获取和处理网络上的手语视频。该数据集具有高效、轻量的特点,旨在减少先前手语数据集的不足之处。该数据集目前包含…...
四川景源畅信:新人做抖店的成本很高吗?
随着社交媒体的兴起,抖音成为了一个新兴的电商平台——抖店。不少创业者和商家看中了其庞大的用户基础,想要通过开设抖店来拓展销路。然而,对于刚入行的新手来说,成本问题总是让人犹豫不决。究竟新人做抖店的成本高不高?本文将围…...
ChatGPT原创指令大全(持续更新)
随着ChatGPT在互联网上的使用越来越多,但很多人在使用ChatGPT的过程中会觉得得到的答案并不是很精准。究其原因其实是你给它的命令不够准确、不够到位。实际现在网上已经很多关于ChatGPT的网站,可以快速生成带有快捷键的ChatGPT指令。但是对于不熟悉Chat…...
Java实现对PDF、纵向、横向页面添加自定义水印功能
Java实现对PDF、纵向、横向页面添加自定义水印 效果图 -- 纵向 页面PDF使用到JAR Maven依赖版本效果图 -- 横向页面PDF 效果图 – 纵向 页面PDF 代码如下: 使用到JAR Maven依赖版本 <dependency><groupId>org.apache.pdfbox</groupId><artifa…...
设计模式15——享元模式
写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用,主要是下面的UML图可以起到大作用,在你学习过一遍以后可能会遗忘,忘记了不要紧,只要看一眼UML图就能想起来了。同时也请大家多多指教。 享元模式(Flyweigh…...
多模态中的模态有哪些
“多模态”这个名字中的“模态”(modality),指的是不同的数据类型或信息源。在多模态大模型中,常见的模态包括: 文本模态: 包括自然语言文本、语音识别文本等。 图像模态: 指图像数据ÿ…...
Java练习题(八)
36.关于抽象类叙述正确的是? (B ) A.抽象类不能实现接口 B.抽象类必须有“abstract class”修饰 C.抽象类必须包含抽象方法 D.抽象类也有类的特性,可以被实例化 37.以下说法错误的是(C) A.数组是一个对象 B.数组不是一种原…...
Linux文本文件管理003
★排序、去重、统计★ 1)排序 sort -n按照数值排序 -r降序排列 2)去重 uniq 过滤相邻、重复的行 -c 对重复行计数 3)统计 wc 统计文件中的字节数、单词数、行数 -l 显示行数 今天通过使用grep、awk、cut指令和上面几个选项提取文本文件…...
uniapp Androud 离线打包升级APK,覆盖安装不更新问题
Android 打包时在assets/data/dcloud_control.xml文件中,如果配置debug"true" syncDebug"true",则consle打印有效,不然没有打印数据 <hbuilder debug"true" syncDebug"true"> <apps> …...
【算法实战】每日一题:设计一个算法,用最少数量的矩形覆盖一系列宽度为d、高度为w的矩形,且使用矩形不能超出边界
题目 设计一个算法,用最少数量的矩形覆盖一系列宽度为d、高度为w的矩形建筑物侧墙,且矩形不能超出边界。 核心思路 考虑这种结构 前面递增后面一个与前面的某个高度一致,这时候考虑最下面的覆盖(即都是从最下面向上覆盖&#…...
外贸仓库管理软件:海外仓效率大幅度提升、避免劳动力积压
随着外贸业务的不断发展,如何高效管理外贸仓库,确保货物顺利流转,订单顺利处理,就变得非常重要。 现在通常的解决方案都是通过引入外贸仓库管理软件,也就是我们常说的海外仓WMS系统来解决。 今天我们就系统的探讨一下…...
6.8 LIBBPF API(七,bpf_core_read.h 函数,定义,枚举)
一,函数 void * bpf_rdonly_cast (const void *obj, __u32 btf_id) __ksym __weak 二,定义 __CORE_RELO(src, field, info) __builtin_preserve_field_info((src)->field,BPF_FIELD_##info) __CORE_BITFIELD_PROBE_READ(dst, src, fld) bpf_probe_read_kernel( \ (v…...
电脑卸载linux安装windows后每次开机都出现grub
原因分析 这是因为电脑硬盘中还存在linux系统的引导程序,并且启动顺序还在windows之前,有时候通过bios根本找不到它的存在,以至于每次windows开机出现grub之后都要输入exit退出linux的引导之后才能使得电脑进入windows,这个有时会…...
总结 HTTPS 的加密流程
一、前言 http是为了解决http存在的问题而在http基础上加入了SSL/TSL,在HTTP/2中TCP三次握手后会进入SSL/TSL握手,当SSL/TSL建立链接后,才会进行报文的传输。 二、HTTPS的混合加密 我们先来认识密钥: 密钥是用于加密和解密数据…...
Spring的FactoryBean多例问题
关于spring bean,我们了解的最多的还是单例,而多例bean,除了平时我们自己new的那些多实例外(但不属于IOC管理了),几乎很少能用到,而在spring 层面,FactoryBean刚好是多例的一个体现,…...
[nextjs]推荐几个很好看的模板网站
最近在做网站,折腾了 vue 框架,然后发现了 nextjs 框架,感觉这个做出来的网站配色很好看,然后又开始研究这个 网站配色好看是因为用的 tailwindcss,找网站过程中,发现了几个很好看的模板网站,在这里推荐下,或许你也能用得上 推荐第一个网站是: https://tailspark.co/ 有组件,也…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
