lightning的hook顺序
结果
setup: 训练循环开始前设置数据加载器和模型。
configure_optimizers: 设置优化器和学习率调度器。
on_fit_start: 训练过程开始。
on_train_start: 训练开始。
on_train_epoch_start: 每个训练周期开始。
on_train_batch_start: 每个训练批次开始。
on_before_backward: 反向传播之前。
on_after_backward: 反向传播之后。
on_before_zero_grad: 清空梯度之前。
on_after_zero_grad: 清空梯度之后。
on_before_optimizer_step: 优化器步骤之前。
on_train_batch_end: 每个训练批次结束。
on_train_epoch_end: 每个训练周期结束。
on_train_end: 训练结束。
on_fit_end: 训练过程结束。
测试代码
import torch
from torch.utils.data import DataLoader, TensorDataset
from pytorch_lightning import LightningModule, Trainer, Callback
from pytorch_lightning.callbacks import Callback# 定义一个简单的线性回归模型
class LinearRegression(LightningModule):def __init__(self):super().__init__()self.linear = torch.nn.Linear(1, 1)def forward(self, x):return self.linear(x)def training_step(self, batch, batch_idx):x, y = batchy_hat = self(x)loss = torch.nn.functional.mse_loss(y_hat, y)return lossdef on_after_backward(self, *args, **kwargs):print("After backward is called!", args, kwargs)return super().on_after_backward(*args, **kwargs)def on_before_zero_grad(self, *args, **kwargs):print("Before zero grad is called!", args, kwargs)return super().on_before_zero_grad(*args, **kwargs)def on_after_zero_grad(self, *args, **kwargs):print("After zero grad is called!", args, kwargs)return super().on_after_zero_grad(*args, **kwargs)def on_before_backward(self, *args, **kwargs):print("Before backward is called!", args, kwargs)return super().on_before_backward(*args, **kwargs)def on_before_optimizer_step(self, *args, **kwargs):print("Before optimizer step is called!", args, kwargs)return super().on_before_optimizer_step(*args, **kwargs)def on_after_optimizer_step(self, *args, **kwargs):print("After optimizer step is called!", args, kwargs)return super().on_after_optimizer_step(*args, **kwargs)def on_fit_start(self, *args, **kwargs):print("Fit is starting!", args, kwargs)return super().on_fit_start(*args, **kwargs)def on_fit_end(self, *args, **kwargs):print("Fit is ending!", args, kwargs)return super().on_fit_end(*args, **kwargs)def setup(self, *args, **kwargs):print("Setup is called!", args, kwargs)return super().setup(*args, **kwargs)def configure_optimizers(self, *args, **kwargs):print("Configure Optimizers is called!", args, kwargs)return super().configure_optimizers(*args, **kwargs)def on_train_start(self, *args, **kwargs):print("Training is starting!", args, kwargs)return super().on_train_start(*args, **kwargs)def on_train_end(self, *args, **kwargs):print("Training is ending!", args, kwargs)return super().on_train_end(*args, **kwargs)def on_train_batch_start(self, *args, **kwargs):print(f"Training batch is starting!", args, kwargs)return super().on_train_batch_start(*args, **kwargs)def on_train_batch_end(self, *args, **kwargs):print(f"Training batch is ending!", args, kwargs)return super().on_train_batch_end(*args, **kwargs)def on_train_epoch_start(self, *args, **kwargs):print(f"Training epoch is starting!", args, kwargs)return super().on_train_epoch_start(*args, **kwargs)def on_train_epoch_end(self, *args, **kwargs):print(f"Training epoch is ending!", args, kwargs)return super().on_train_epoch_end(*args, **kwargs)# 创建数据集
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], dtype=torch.float)
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]], dtype=torch.float)
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=2)# 创建模型和训练器
model = LinearRegression()
trainer = Trainer(max_epochs=2)# 开始训练
trainer.fit(model, train_loader)
相关文章:
lightning的hook顺序
结果 setup: 训练循环开始前设置数据加载器和模型。 configure_optimizers: 设置优化器和学习率调度器。 on_fit_start: 训练过程开始。 on_train_start: 训练开始。 on_train_epoch_start: 每个训练周期开始。 on_train_batch_start: 每个训练批次开始。 on_before_bac…...
【ARFoundation自学03】AR Point Cloud 点云(参考点标记)功能详解
和平面识别框架一样 1为XR Origin添加AR Point Cloud Manager组件 然后你的ar应用就具备了点云识别功能,就这么简单 2.可视化这些云点 创建一个美术效果的预制体,人家提供了预设模板 然后拖到仓库(ASSETS)创建预制体ÿ…...
x264 码率控制中实现 VBV 算法源码分析
关于 VBV 的解释与原理可以参考x264 码率控制 VBV 原理。 x264中 VBV 算法执行的流程 vbv 参数配置相关函数 x264_param_default函数 功能:编码参数默认设置,关于 vbv的参数的默认设置;函数内vbv相关代码:/* ... */ //代码有删减 param->rc.i_vbv_max_bitrate = 0; par…...
宝兰德入选“鑫智奖·2024金融数据智能运维创新优秀解决方案”榜单
近日,由金科创新社主办、全球金融专业人士协会支持的“2024 鑫智奖第六届金融数据智能优秀解决方案”评选结果正式公布。凭借卓越的技术实力和方案能力,宝兰德「智能全链路性能监控解决方案」从90个参选方案中脱颖而出,荣誉入选“鑫智奖2024金…...
Unity3D雨雪粒子特效(Particle System)
系列文章目录 unity工具 文章目录 系列文章目录👉前言👉一、下雨的特效1-1.首先就是创建一个自带的粒子系统,整几张贴图,设置一下就能实现想要的效果了1-2 接着往下看视频效果 👉二、下雪的特效👉三、下雪有积雪的效果3-1 先把控…...
记录使用自定义编辑器做试题识别功能
习惯了将解析写在代码注释,这里就直接上代码啦,里面用到的bxm-ui3组件库是博主基于element-Plus做的,可以通过npm i bxm-ui3自行安装使用 // 识别方法: // dom 当前识别数据所在区域, questionType 当前点击编辑选择的题目类型&a…...
MySQL索引和视图
MySQL索引和视图是关系型数据库MySQL中的两个重要概念。索引用于优化数据库的查询性能,而视图用于提供一个逻辑上的表结构,方便用户查询和操作数据。 索引是一种数据结构,可以加速对数据库表中的数据进行查询的速度。通过创建索引࿰…...
Java单元测试Mock的用法,关于接口测试的用例
Testvoid getAllTradeDateList() {// 创建模拟对象Bc6CalculateService calculateService Mockito.mock(Bc6CalculateService.class);String allTradeDateListStr ExcelUtil.excelToJsonStr("bc6/NibTradeDate.xlsx");// 设置模拟行为List<NibTradeDateCloudDto…...
《心理学报》文本分析技术最新进展总结盘点
这些研究展示了文本分析在多个心理学领域内的强大应用,包括情境判断测验的自动化评分、自闭症儿童教育干预的学习效果评估、中文文本阅读的词切分和词汇识别机制、网络突发事件的负性偏向分析,以及小学生羞怯特质的预测与语言风格模型构建。通过采用机器…...
json格式文件备份redis数据库 工具
背景: 项目组要求使用 json备份redis缓存数据库内容。 附件里工具是一个包含redis-dump工具的镜像文件,方便用户在局域网中使用容器备份redis缓存数据库。 使用步骤: 解压tar文件,导入镜像 docker load < redis_dump_of_my…...
JAVA系列:NIO
NIO学习 一、前言 先来看一下NIO的工作流程图: NIO三大核心组件,channel(通道)、Buffer(缓冲区)、selector(选择器)。NIO利用的是多路复用模型,一个线程处理多个IO的读…...
偏微分方程算法之抛物型方程差分格式编程示例二
目录 一、研究问题 二、C++代码 三、结果分析 一、研究问题 采用向后欧拉格式计算抛物型方程初边值问题:...
linux 查看 线程名, 线程数
ps -T -p 3652 ps H -T <PID> ps -eLf | grep process_name top -H -p <pid> 查看进程创建的所有线程_ps 显示一个进程的所有线程名字-CSDN博客...
python class __getattr__ 与 __getattribute__ 的区别
在Python中,__getattr__是一个特殊的方法,用于处理访问不存在的属性时的行为。它通常在类中被重写,以便在属性访问失败时提供自定义的处理逻辑。 __getattr__ 的使用 1. 基本用法 __getattr__方法在访问类实例的某个不存在的属性时自动调用…...
[ C++ ] 类和对象( 下 )
初始化列表 初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟 一个放在括号中的初始值或表达式。 class Date { public: Date(int year, int month, int day): _year(year), _month(month), _d…...
这么多不同接口的固态硬盘,你选对了嘛!
固态硬盘大家都不陌生,玩游戏、办公存储都会用到。如果自己想要给电脑或笔记本升级下存储,想要存储更多的文件,该怎么选购不同类型的SSD固态盘呐,下面就来认识下日常使用中常见的固态硬盘。 固态硬盘(Solid State Drive, SSD)作为数据存储技术的革新力量,其接口类型的选…...
使用IDEA远程debug调试
文章目录 应用背景开启方式IDEA设置启动脚本改造 参考资料 应用背景 springboot项目,部署到服务器上,需要开启远程debug跟踪代码。 使用idea开启远程debug。 开启方式 IDEA设置 选择 Edit Configuration 如图,点击加号,选择Re…...
开源自定义表单系统源码 一键生成表单工具 可自由DIY表单模型+二开
分享一款开源自定义表单系统源码,能够实现99%各行业的报名、预约、加盟申请、调查等应用,而且同时多开创建多个表单,支持自定义各种字段模型,市面上需要的表单模型都含了,随便自定义啦,含完整的代码包和详细…...
【java10】集合中新增copyof创建只读集合
在Java中,集合(如List、Set、Map等)是编程中常用的数据结构。然而,在某些场景下,我们可能希望集合中的数据是只读的,即不允许修改集合中的元素。在Java8及之前,要实现这样的功能,我们…...
python小甲鱼作业001-3讲
0.Python是什么类型的语言 编译型语言不同,Python 代码在执行时由解释器直接逐行解释执行,无需先编译成机器语言。这使得开发过程更快,因为你可以即时运行并测试你的代码。 Python 在运行时自动推断变量的类型,无需在代码中显式声…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
