当前位置: 首页 > news >正文

力扣hot100:23. 合并 K 个升序链表

23. 合并 K 个升序链表
在这里插入图片描述
这题非常容易想到归并排序的思路,俩升序序列合并,可以使用归并的方法。

不过这里显然是一个多路归并排序;包含多个子数组的归并算法,这可以让我们拓展归并算法的思路。

假设n是序列个数,ni是单个序列长度,length是单个序列最大长度

1、顺序单次归并

从左往右依次进行归并,但是这种方法存在一定的缺点。假设n是序列个数,ni是单个序列长度,根据题设,这个方法的最大比较次数至少是:
n 1 + ( n 1 + n 2 ) + ( n 1 + n 2 + n 3 ) ⋅ ⋅ ⋅ = n ∗ n 1 + ( n − 1 ) ∗ n 2 + ( n − 2 ) ∗ n 3 ⋅ ⋅ ⋅ < = n ∗ ( n 1 + n 2 + n 3 + ⋅ ⋅ ⋅ ) = n 2 ∗ l e n g t h < = 1 0 4 ∗ 500 ∗ 1 0 4 n1+(n1+n2)+(n1+n2+n3)··· = n*n1 + (n-1)*n2 + (n-2)*n3··· <= n*(n1+n2+n3+···) = n^2 * length <=10^4*500*10^4 n1+(n1+n2)+(n1+n2+n3)⋅⋅⋅=nn1+(n1)n2+(n2)n3⋅⋅⋅<=n(n1+n2+n3+⋅⋅⋅)=n2length<=104500104
这相当于每个序列都需要被比较序列个数次,这换成是多路归并的数组合并也是一样的。

官方:
在这里插入图片描述
在这里插入图片描述

class Solution {
public:ListNode* mergeKLists(vector<ListNode*>& lists) {ListNode * head = nullptr;for(int i = lists.size() - 1;i >= 0; --i){head = merge(head, lists[i]);ListNode * temp = head;}return head;}
private:ListNode * merge(ListNode * p,ListNode * q){if(!p) return q;if(!q) return p;ListNode * head = p;if(head->val > q->val) head = q;if(head == p) p = p->next;else q = q->next;ListNode * temp = head;while(p && q){if(p->val > q->val){head->next = q;q = q->next;}else{head->next = p;p = p->next;}head = head->next;}head->next = p ? p : q;return temp;}
};

2、分治归并

使用分治的思想排序是很容易想到的,但是不能很容易的知道分治归并速度一定更快,接下来让我详细思考一下是否会更快:
我们可以考虑,每次将序列数量减半合并,那么每一层合并使用的时间是 O ( l e n g t h ∗ n ) O(length*n) O(lengthn),我们知道每层数量减半,那么一共是有 O ( l o g n ) O(logn) O(logn)层,所以时间复杂度为 O ( n l o g n ∗ l e n g t h ) O(nlogn * length) O(nlognlength)

为什么分治归并会比普通顺次归并要快?
可以这样看一下,使用分治,将所有数分为两个区间[l,mid][mid+1,r],左区间的数 和 右区间的数只会在最后合并时比较一次,其他时候打死不相往来。而使用顺序归并,左区间的数 和 右区间的数会比较很多次,在考虑到
在这里插入图片描述
在这里插入图片描述

class Solution {
public:ListNode* mergeKLists(vector<ListNode*>& lists) {if(lists.size() == 0) return nullptr;return mergesort(lists, 0, lists.size() - 1);}
private:ListNode * merge(ListNode * p,ListNode * q){if(!p) return q;if(!q) return p;ListNode * head = p;if(head->val > q->val) head = q;if(head == p) p = p->next;else q = q->next;ListNode * temp = head;while(p && q){if(p->val > q->val){head->next = q;q = q->next;}else{head->next = p;p = p->next;}head = head->next;}head->next = p ? p : q;return temp;}ListNode * mergesort(vector<ListNode*>& lists,int left,int right){if(left == right) return lists[left];int mid = (left + right) >> 1;ListNode * p = mergesort(lists,left,mid);ListNode * q = mergesort(lists,mid + 1, right);return merge(p, q);}
};

3、使用优先队列合并

这种方式非常牛。

我们将所有序列,依据序列头部的元素大小放入一个优先队列,那么这个优先队列的深度是 l o g n logn logn,然而我们每次取出一个结点它的头部必然是现在里面最小的,将它放入待合并的目标序列中,然后将该序列后移一位,插入到优先队列中。因此每个元素插入时间是 O ( l o g n ) O(logn) O(logn),一共有 ( l e n g t h ∗ n ) (length * n) (lengthn)个元素。所以总时间为 O ( n l o g n ∗ l e n g t h ) O(nlogn*length) O(nlognlength)
在这里插入图片描述

class Solution {
public:ListNode* mergeKLists(vector<ListNode*>& lists) {if(lists.size() == 0) return nullptr;priority_queue<ListNode *,vector<ListNode *>,Sort> q;for(int i = lists.size() - 1;i >= 0; --i) if(lists[i]) q.push(lists[i]);ListNode * dummy = new ListNode;ListNode * temp = dummy;while(!q.empty()){ListNode * head = q.top();q.pop();temp->next = head;temp = temp->next;head = head->next;if(head) q.push(head);}temp = dummy->next;delete dummy;return temp;}
private:struct Sort{bool operator ()(const ListNode * a,const ListNode * b){return a->val > b->val;}};
};

能够实现优先队列,那么这个问题就很容易被解决。

  • 我们需要注意两个问题
    • 优先队列使用的比较函数必须自定义为结构体或者符号重载
    • 优先队列使用的比较函数的大于号小于号取值,和sort刚好相反。

使用方式:

priority_queue<Exp,vector<Exp>,cmp> q;
struct cmp{bool operator() (Exp a, Exp b){if() return true;return false;}
}

唯一变化的就是括号里面的类型Exp和你想要定义的比较方式。

相关文章:

力扣hot100:23. 合并 K 个升序链表

23. 合并 K 个升序链表 这题非常容易想到归并排序的思路&#xff0c;俩升序序列合并&#xff0c;可以使用归并的方法。 不过这里显然是一个多路归并排序&#xff1b;包含多个子数组的归并算法&#xff0c;这可以让我们拓展归并算法的思路。 假设n是序列个数&#xff0c;ni是…...

Lightweight Robust Size Aware Cache Management——论文泛读

TOC 2022 Paper 论文阅读笔记整理 问题 现代键值存储、对象存储、互联网代理缓存和内容交付网络&#xff08;CDN&#xff09;通常管理不同大小的对象&#xff0c;例如&#xff0c;Blob、不同长度的视频文件、不同分辨率的图像和小文件。在这种工作负载中&#xff0c;大小感知…...

搜索自动补全-elasticsearch实现

1. elasticsearch准备 1.1 拼音分词器 github地址&#xff1a;https://github.com/infinilabs/analysis-pinyin/releases?page6 必须与elasticsearch的版本相同 第四步&#xff0c;重启es docker restart es1.2 定义索引库 PUT /app_info_article {"settings": …...

连接远程的kafka【linux】

# 连接远程的kafka【linux】 前言版权推荐连接远程的kafka【linux】一、开放防火墙端口二、本地测试是否能访问端口三、远程kafka配置四、开启远程kakfa五、本地测试能否连接远程六、SpringBoot测试连接 遇到的问题最后 前言 2024-5-14 18:45:48 以下内容源自《【linux】》 仅…...

简单的 Cython 示例

1&#xff0c; pyx文件 fibonacci.pyx def fibonacci_old(n):if n < 0:return 0elif n 1:return 1else:return fibonacci_old(n-1) fibonacci_old(n-2) 2&#xff0c;setup.py setup.py from setuptools import setup from Cython.Build import cythonizesetup(ext_mod…...

Laravel时间处理类Carbon

时间和日期处理是非常常见的任务。Carbon 是一个功能强大的 PHP 扩展包&#xff0c;它为我们提供了许多方便的方法来处理日期和时间。在 Laravel 中&#xff0c;你无需单独安装 Carbon&#xff0c;因为 Laravel 默认已经包含了它。如果你正在使用 Laravel&#xff0c;那么你已经…...

2024年5月软考架构题目回忆分享

十年架构两茫茫 &#xff0c;Redis , UML 夜来幽梦忽还乡 &#xff0c; 大数据&#xff0c; Lambda 选择题 1.需求分析和架构设计面临这两个不同对象&#xff0c;一个是问题空间&#xff0c;一个是解空间 这是英文题&#xff0c;总共五个题目&#xff0c;只记得这么多 2. …...

香橙派 AIpro开发板初上手

一、香橙派 AIpro开箱 最近拿到了香橙派 AIpro&#xff08;OrangePi AIpro&#xff09;&#xff0c;下面就是里面的板子和相关的配件。包含主板、散热组件、电源适配器、双C口电源线、32GB SD卡。我手上的这个是8G LPDDR4X运存的版本。 OrangePi AIpro开发板是一款由香橙派与华…...

如何使用DotNet-MetaData识别.NET恶意软件源码文件元数据

关于DotNet-MetaData DotNet-MetaData是一款针对.NET恶意软件的安全分析工具&#xff0c;该工具专为蓝队研究人员设计&#xff0c;可以帮助广大研究人员轻松识别.NET恶意软件二进制源代码文件中的元数据。 工具架构 当前版本的DotNet-MetaData主要由以下两个部分组成&#xf…...

LeetCode---栈与队列

232. 用栈实现队列 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作&#xff08;push、pop、peek、empty&#xff09;&#xff1a; 实现 MyQueue 类&#xff1a; void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int pee…...

【教程】利用API接口添加本站同款【每日新闻早早报】-每天自动更新,不占用文章数量

本次分享的是给网站添加一个每日早报的文章&#xff0c;可以看到本站置顶上面还有一个日更的日报&#xff0c;这是利用ALAPI的接口完成的&#xff01;利用接口有利也有弊&#xff0c;因为每次用户访问网站的时候就会增加一次API接口请求&#xff0c;导致文章的请求会因为请求量…...

僵尸进程,孤儿进程,守护进程

【一】僵尸进程 1.僵尸进程是指完成自己的任务之后&#xff0c;没有被父进程回收资源,占用系统资源,对计算机有害&#xff0c;应该避免 """ 所有的子进程在运行结束之后都会变成僵尸进程(死了没死透)还保留着pid和一些运行过程的中的记录便于主进程查看(短时间…...

Nuxt3 中使用 ESLint

# 快速安装 使用该命令安装的同时会给依赖、内置模块同时更新 npx nuxi module add eslint安装完毕后&#xff0c;nuxt.config.ts 文件 和 package.json 文件 会新增代码段&#xff1a; # nuxt.config.ts modules: ["nuxt/eslint" ] # package.json "devDep…...

【Jmeter】性能测试之压测脚本生成,也可以录制接口自动化测试场景

准备工作-10分中药录制HTTPS脚本&#xff0c;需配置证书 准备工作-10分中药 以https://www.baidu.com/这个地址为录制脚本的示例。 录制脚本前的准备工作当然是得先把Jmeter下载安装好、JDK环境配置好、打开Jmeter.bat&#xff0c;打开cmd&#xff0c;输入ipconfig&#xff0c;…...

Go 编程技巧:零拷贝字符串与切片转换的高效秘籍

前言 ​ 在深入探讨Go语言中字符串与切片类型转换的高效方法之前&#xff0c;让我们先思考一个关键问题&#xff1a;如何在不进行内存拷贝的情况下&#xff0c;实现这两种数据类型之间的无缝转换&#xff1f;本文将详细解析Go语言中字符串&#xff08;字符类型&#xff09;和切…...

音视频开发—FFmpeg 音频重采样详解

音频重采样&#xff08;audio resampling&#xff09;是指改变音频信号的采样率的过程。采样率&#xff08;sample rate&#xff09;是指每秒钟采集的音频样本数&#xff0c;通常以赫兹&#xff08;Hz&#xff09;或每秒样本数&#xff08;samples per second&#xff09;表示。…...

统计本地端口占用情况

要查看MongoDB是否正在备份&#xff0c;可以通过以下几种方法&#xff1a; 查看MongoDB的进程列表&#xff1a; 使用命令ps -ef | grep mongo&#xff0c;这将列出所有正在运行的MongoDB进程。在输出的列表中&#xff0c;你可以查看是否有与备份相关的进程或任务正在运行。 查…...

【MySQL精通之路】SQL优化(1)-查询优化(9)-外部联接优化

主博客&#xff1a; 【MySQL精通之路】SQL优化(1)-查询优化-CSDN博客 上一篇&#xff1a; 【MySQL精通之路】SQL优化(1)-查询优化(8)-嵌套联接优化-CSDN博客 下一篇&#xff1a; 【MySQL精通之路】SQL优化(1)-查询优化(10)-外部联接简化-CSDN博客 外部联接包括LEFT JOIN和…...

Python应用开发——30天学习Streamlit Python包进行APP的构建(1)

关于 #30天学Streamlit #30天学Streamlit 是一个旨在帮助你学习构建 Streamlit 应用的编程挑战。 你将学会: 如何搭建一个编程环境用于构建 Streamlit 应用构建你的第一个 Streamlit 应用学习所有好玩的、能用在 Streamlit 应用里的输入输出组件🗓️ 天 1 设置本地开发环境…...

轻兔推荐 —— 一个好用的软件服务推荐平台

给大家推荐一个好用的的软件服务推荐平台&#xff1a;轻兔推荐 网站界面简洁大方&#xff0c;没有太多杂七杂八的功能和页面&#xff0c;有明暗主题色可以选择&#xff0c;默认为亮色&#xff0c;可在网站上方手动切换。 每工作日都会推荐一款软件&#xff0c;有时会加更&…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...