当前位置: 首页 > news >正文

上下文视觉提示实现zero-shot分割检测及多visual-prompt改造

文章目录

  • 一、Closed-Set VS Open-set
  • 二、DINOv
    • 2.1 论文和代码
    • 2.2 内容
    • 2.3 安装部署
    • 2.4 使用效果
  • 三、多visual prompt 改造
    • 3.1 获取示例图mask
    • 3.2 修改函数参数
    • 3.3 推理代码
    • 3.4 效果的提升!
  • 四、总结

  本文主要介绍visual prompt模型DINOv,该模型可输入八张目标示例图作为参考,告诉模型我要找的目标长这样,在新的图片上进行推理,实现实例分割的效果。
   但一些复杂的场景,八张的示例图不能让模型完全的学习到目标的特征,因此扩展模型能力,让visual prompt数量不受限制,对实际场景应用是非常有必要的(附改造方法、改造代码)。

一、Closed-Set VS Open-set

  Closed-Set模型只需要关注有限数量的已知类别,答案选项是预先定义的,这意味着模型的输出范围是有限的、固定的,并且只限于训练时已知的选项,例如YOLO;Open-Set模型可以识别不属于任何已知类别的样本,即其输出范围不是固定的,具备一定的泛化能力和鲁棒性,以应对这些未知的挑战,例如SAM。
  在某些特定的应用场景中,仅仅依赖文本提示(text prompt)来描述目标对象,对于Open-Set大模型来说,可能并不足以实现精准识别。若能够额外提供示例图像(visual prompt),将有助于模型更准确地理解我们的意图,从而提升整体的识别效果。
  下图是DINOv作者提供的demo界面,左上角输入油污推理图,左下角输入多张油污示例图,并用画笔进行mask,运行模型可得到右边的推理效果。

二、DINOv

2.1 论文和代码

论文名称:《Visual In-Context Prompting》
code:https://github.com/UX-Decoder/DINOv
demo:http://semantic-sam.xyzou.net:6099/

2.2 内容

  上下文提示是一种利用少量示例任务来指导模型完成新任务的技术。在视觉任务中,这种技术可以通过提供一组带有标签的图像作为示例,来引导模型理解和解决新的视觉任务。
  模型通过学习少量的带有标签的样本图像,提取出这些图像中的关键特征和模式,然后利用这些特征和模式来生成针对新图像的查询。这个查询可以引导模型在新图像中定位并分割出目标物体。具体来说,模型可能通过学习示例图像中的物体形状、颜色、纹理等特征,以及这些特征与标签之间的关系,来构造出查询。然后,模型将这个查询应用于其他图像,通过匹配和比较查询与图像中的特征,来定位并分割出目标物体。最终,模型会生成一个掩码,标记出分割出的物体区域。
  以图片作为提示(visual prompt),在提示图上通过笔画、画mask等方法作为视觉prompt,可推理出侧视图中同类目标,达到zero-shot目标分割的效果。
在这里插入图片描述
说明:在降落伞进行mask标注,在新的降落伞场景可分割出降落伞,其他场景同理

2.3 安装部署

系统要求:gcc版本>=4.9

# 1、离线安装detectron2
# 下载https://github.com/MaureenZOU/detectron2-xyz.git
Unzip detectron2-xyz.zip  # 解压
Cd detectron2-xyz
Pip install -e .
# 2、离线安装panopticapi
# 下载https://github.com/cocodataset/panopticapi.git
Unzip panopticapi.zip  # 解压
Cd panopticapi
Pip install -e .
# 3、启动DINOv
# 下载DINOv,https://github.com/UX-Decoder/DINOv
Unzip DINOv.zip  # 解压
cd DINOv
python -m pip install -r requirements.txt
python demo_openset.py --ckpt /path/to/swinL/ckpt
# 终端返回下图链接

在这里插入图片描述
注:在浏览器访问public URL,建议使用梯子,local URL直接用即可

2.4 使用效果

  通过界面输入八张示例图,在一些大目标、规整目标(如矩形、圆形),效果较好,在复杂场景、小目标、不规则物体,无法达到预期效果,例如墙缝缺陷,无法分割裂缝。
在这里插入图片描述

三、多visual prompt 改造

  使用八张图片作为示例图,可能无法完全学习到目标。在实际使用中,我们可能采集到一小部分图片,例如50张、100张等;如何让DINOv不受限制,可支持多张输入呢?

3.1 获取示例图mask

  使用labelme标注工具,生成json标注文件,使用下面代码将json转化为标注mask图。

import json
import cv2
import os
import matplotlib.pyplot as plt
import numpy as npdef generate_mask(img_path, json_path, save_path):img = cv2.imread(img_path)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)mask = np.zeros_like(img)with open(json_path, "r") as f:tmp = f.read()tmp = json.loads(tmp)tmp_shapes = tmp["shapes"]for shape in tmp_shapes:points = shape["points"]points = np.array(points, np.int32)cv2.fillPoly(mask, [points], (255, 255, 255)) img_add = cv2.addWeighted(mask, 0.3,img,0.7,0)cv2.imwrite(save_path, mask)if __name__ == "__main__":imgs_dir = "./imgs"    # 图片目录jsons_dir = "./jsons"  # 标注的json文件存放目录save_dir = "./masks"   # 生成mask图保存目录img_files = os.listdir(imgs_dir)for img_name in img_files:img_path = os.path.join(imgs_dir, img_name)json_path = os.path.join(jsons_dir, img_name.split('.')[0]+'.json')if os.path.exists(json_path):save_path = os.path.join(save_dir, img_name)generate_mask(img_path, json_path, save_path)

3.2 修改函数参数

修改文件路径:demo/openset_task.py
作用:将原8张图输入修改为列表不限制输入

# 原代码31-37行
def task_openset(model,generic_vp1, generic_vp2, generic_vp3, generic_vp4,generic_vp5, generic_vp6, generic_vp7, generic_vp8, image_tgt=None, text_size=640,hole_scale=100,island_scale=100):in_context_examples = [generic_vp1, generic_vp2, generic_vp3, generic_vp4,generic_vp5, generic_vp6, generic_vp7, generic_vp8]in_context_examples = [x for x in in_context_examples if x is not None]t = []t.append(transforms.Resize(int(text_size), interpolation=Image.BICUBIC))
# 替换代码
def task_openset(model,refer_img_list, image_tgt=None, text_size=640,hole_scale=100,island_scale=100):# in_context_examples = [generic_vp1, generic_vp2, generic_vp3, generic_vp4,#                generic_vp5, generic_vp6, generic_vp7, generic_vp8]in_context_examples = refer_img_listin_context_examples = [x for x in in_context_examples if x is not None]t = []t.append(transforms.Resize(int(text_size), interpolation=Image.BICUBIC))

3.3 推理代码

  自定义imgs_dir、mask_dir、tgt_dir,执行代码,可在save_dir中找到结果图

import torch
import argparse
from PIL import Image
import cv2
import osfrom dinov.BaseModel import BaseModel
from dinov import build_model
from utils.arguments import load_opt_from_config_filefrom demo.openset_task import task_openset def parse_option():parser = argparse.ArgumentParser('DINOv Demo', add_help=False)parser.add_argument('--conf_files', default="configs/dinov_sam_coco_swinl_train.yaml", metavar="FILE", help='path to config file', )parser.add_argument('--ckpt', default="model_swinL.pth", metavar="FILE", help='path to ckpt')parser.add_argument('--port', default=6099, type=int, help='path to ckpt', )args = parser.parse_args()return args'''
build args
'''
args = parse_option()'''
build model
'''sam_cfg=args.conf_filesopt = load_opt_from_config_file(sam_cfg)model_sam = BaseModel(opt, build_model(opt)).from_pretrained(args.ckpt).eval().cuda()@torch.no_grad()
def inference(refer_img_list, image2,*args, **kwargs):with torch.autocast(device_type='cuda', dtype=torch.float16):model=model_sama= task_openset(model, refer_img_list, image2, *args, **kwargs)return a"""
读取image和labelme标注的mask图
推理一整个目录的图片
"""def inference_dir(imgs_dir, mask_dir, tgt_dir, save_dir):files = os.listdir(tgt_dir)result_img_list = []for file in files:print(f'==={file}==')image_tgt_path = os.path.join(tgt_dir, file)image_tgt = Image.open(image_tgt_path).convert('RGB')refer_img_list = []img_files = os.listdir(imgs_dir)for img_name in img_files:img_path = os.path.join(imgs_dir, img_name)mask_path = os.path.join(mask_dir, img_name)if os.path.exists(mask_path):generic_vp= {"image":"", "mask":""}generic_vp["image"] = Image.open(img_path).convert('RGB')generic_vp["mask"] = Image.open(mask_path).convert('RGB')refer_img_list.append(generic_vp)# print(len(refer_img_list))res = inference(refer_img_list, image_tgt)res = cv2.cvtColor(res, cv2.COLOR_RGB2BGR)cv2.imwrite(os.path.join(save_dir, os.path.basename(image_tgt_path)), res)if __name__ == "__main__":imgs_dir = "./test_img_2/group_50/refer/imgs"   # 示例图目录mask_dir = "./test_img_2/group_50/refer/masks"  # 示例mask图目录tgt_dir = "./test_img_2/tgt"     # 推理图目录save_dir = "results/group_50/"   # 结果保存目录inference_dir(imgs_dir, mask_dir, tgt_dir, save_dir)

3.4 效果的提升!

  在验证多visual prompt对结果的影响,采用了对比实验。在光学镜头缺陷场景中,8张visual prompt和50张visual prompt进行对比,50张visual prompt得到的推理效果更优!
在这里插入图片描述

四、总结

  如果文章对您有所帮助,记得点赞、收藏、评论探讨✌️

相关文章:

上下文视觉提示实现zero-shot分割检测及多visual-prompt改造

文章目录 一、Closed-Set VS Open-set二、DINOv2.1 论文和代码2.2 内容2.3 安装部署2.4 使用效果 三、多visual prompt 改造3.1 获取示例图mask3.2 修改函数参数3.3 推理代码3.4 效果的提升! 四、总结 本文主要介绍visual prompt模型DINOv,该模型可输入八…...

WebGL学习(一)渲染关系

学习webgl 开发理解渲染关系是必须的,也非常重要,很多人忽视了这个过程。 我这里先简单写一下,后面尽量用通俗易懂的方式,举例讲解。 WebGL,全称Web Graphics Library,是一种在网页上渲染3D图形的技术。它…...

人生建议:向猫学习

心安理得地被爱 猫从不担心自己不配得到爱,也正是这幅理所应当、宠辱不惊的样子,让人欲罢不能。或许 当你相信自己值得世界上最好的爱时,你就会拥有。 多晒太阳多睡觉 猫喜欢睡觉,尤其喜欢躺阳光好的地方。阳光和睡眠&#xff0c…...

软件架构设计属性之三:结构性属性浅析

文章目录 引言一、结构性属性的定义二、结构性属性的关键要素1. 组件化2. 模块化3. 层次化4. 接口定义5. 数据流6. 依赖管理 三、结构性属性的设计原则1. 高内聚低耦合2. 松耦合3. 清晰的接口4. 可维护性5. 可扩展性 四、结构性属性的实现策略1. 组件划分2. 模块化设计3. 接口设…...

JAVA:多线程常见的面试题和答案

请关注微信公众号:拾荒的小海螺 博客地址:http://lsk-ww.cn/ 1、并发编程三要素? 原 子 性 原子性指的是一个或者多个操作,要么全部执行并且在执行的过程中不被其他操作打断,要么就全部都不执行。可 见 性 可见性指多…...

短信平台-平台群发短信

时代的进步带来了我们生活的便利,而其中最受欢迎和广泛应用的方式之一就是通过短信传递信息。在这个飞速发展的数字时代,我们需要一个高效、可靠的短信平台来满足不断增长的通讯需求。而今天,我要向大家推荐的正是这样一款卓越的短信平台——…...

C++:类和对象

一、前言 C是面向对象的语言,本文将通过上、中、下三大部分,带你深入了解类与对象。 目录 一、前言 二、部分:上 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 5.类的作用域 6.类的实例化 7.类的…...

JavaScript条件语句与逻辑判断:解锁代码逻辑的奥秘【含代码示例】

JavaScript条件语句与逻辑判断:解锁代码逻辑的奥秘【含代码示例】 基本概念与作用if...else:决策的基础switch:多路分支的能手逻辑运算符:连接逻辑的纽带三元运算符:简洁的力量 功能使用思路与技巧短路求值优化防止swi…...

sparksql自定义函数

前言 Spark SQL UDF(也称为用户定义函数)是Spark SQL&DataFrame最有用的功能,它扩展了Spark内置功能。在本文中,我将解释什么是UDF?为什么我们需要它,以及如何使用Java、Scala示例在DataFrame和SQL上创建和使用它。 注意:UDF是最昂贵的操作,因此只有在必要时才使用…...

新人开发新系统,旧人维护旧系统

通常来说旧系统存在一些难以解决的问题,软件架构及逻辑实现可能会有一定的缺陷和复杂度,甚至有些烂系统可以称为”焦油坑“,意思是出现问题难以分析解决,谁来谁陷进去。因此,如果同时存在新系统(可能正在开…...

鸿蒙应用模型:【Stage模型开发】概述

Stage模型开发概述 基本概念 下图展示了Stage模型中的基本概念。 图1 Stage模型概念图 [AbilityStage] 每个Entry类型或者Feature类型的HAP在运行期都有一个AbilityStage类实例,当HAP中的代码首次被加载到进程中的时候,系统会先创建AbilityStage实例…...

java使用jdbcTemplatep批量插入数据

JdbcTemplate 是 Spring 框架中提供的一个简化 JDBC 操作的工具类,它封装了 JDBC 的核心功能,使得开发者能够更方便、简洁地进行数据库操作。 下面是一个使用 JdbcTemplate 进行批量插入的示例: import org.springframework.jdbc.core.Batch…...

K8s service 进阶

文章目录 K8s service 进阶Service 工作逻辑Service 具体实现Service 资源类型ClusterIPNodePortLoadBalancerExternalName Service 与 EndpointEndpoint 与 容器探针自定义Endpoint Service 相关字段sessionAffinityexternalTrafficPolicyinternalTrafficPolicypublishNotRead…...

CompletableFuture详细讲解

目录 一、基本概念 1.1 异步编程 1.2 CompletableFuture简介 二、创建和完成CompletableFuture 2.1 创建CompletableFuture对象 2.2 手动完成CompletableFuture 2.3 异常完成CompletableFuture 三、异步计算和回调 3.1 异步任务的执行 3.2 处理计算结果 四、组合多个…...

【Linux】初识Linux和Linux环境配置

1.什么是Linux操作系统 说到电脑系统 我想有大多数人会脱口而出:windows、mac 是的,这也是如今市场上主流的两种操作系统。 但是对于IT相关的人士来说,还有一种系统也是必须有姓名 那就是Linux Linux,Linux Is Not UniX 的…...

redis-cli help使用

1. redis-cli命令使用—先连接上服务器 连接到 Redis 服务器: 使用 redis-cli 命令即可连接到本地运行的 Redis 服务器,默认连接到本地的 6379 端口。 redis-cli如果 Redis 服务器不在本地或者端口不同,可以使用 -h 和 -p 参数指定主机和端…...

中华活页文选高中版投稿发表

《中华活页文选(高中版)》创刊于1960年,是中宣部所属中国出版传媒股份有限公司主管、中华书局主办的国家级基础教育期刊,曾获得“中国期刊方阵双效期刊”、国家新闻出版广电总局推荐的“百种优秀报刊”等荣誉称号。本刊以高中学科…...

[图解]企业应用架构模式2024新译本讲解02-表数据入口

1 00:00:00,420 --> 00:00:04,330 这个案例,我们就是用书上的案例了 2 00:00:06,080 --> 00:00:08,860 收入确认的一个案例 3 00:00:09,510 --> 00:00:11,100 书上讲了,收入确认 4 00:00:13,330 --> 00:00:15,270 就是说,你给…...

SSE(Server Sent Event) 踩坑留念

整条链路是 客户端A --> 服务端 A —> 服务端 B 我负责服务端 A 此时要注意 Client 中的 processes 的写法 Post(value “/v2/xx”, processes MediaType.TEXT_EVENT_STREAM) 这样写是一直报错的 改成下面的写法才可以 Post(value “/v2/xx”, processes MediaT…...

plt.xticks()的作用

参考: https://blog.csdn.net/weixin_41796265/article/details/131442400 plt.xticks() 是 Matplotlib 库中的一个函数,用于设置坐标轴刻度的位置和标签。 它的作用包括: 设置 x 轴刻度的位置:可以通过传递一个数组或列表来设…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

浅谈不同二分算法的查找情况

二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况&#xf…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、👨‍🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨‍&#x1f…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...