当前位置: 首页 > news >正文

MVS net笔记和理解

文章目录

  • 传统的方法有什么缺陷吗?
  • MVSnet
  • 深度的预估

传统的方法有什么缺陷吗?

传统的mvs算法它对图像的光照要求相对较高,但是在实际中要保证照片的光照效果很好是很难的。所以传统算法对镜面反射,白墙这种的重建效果就比较差。
通过深度学习的方式,可以让网络去学习在相对不同的光照效果下的重建,也可以学习到镜面反射的效果。

MVSnet

MVS的理论核心和传统的基本是一样的。 这个网络的核心是构建 cost volume,这个过程就用到plane sweeping的方式。

在这里插入图片描述
这个网络的输入是需要有一张源照片(source image), 和多张参考照片(reference images), 首先需要对这些照片做特征提取。关键是如何构建这个cost volume。首先需要设定一个深度范围,然后将这个深度范围分成很多小份,这样做可以构建出一个volume。然后将源图像的特征图通过相机的内外参将 它从相机坐标系投射至世界坐标系,然后就可以在 volume 中找到一个对应的深度范围,然后再将特征投射到reference image的特征图上,假设深度值是完美的,那么reference image 上的点所带有的特征应该是和原图像中被投射的点的特征是一样的。但是因为有误差所以会得出一个cost,把所有reference照片的cost和在一起就变成了cost volume。为了能让每一张照片都平等的参与,而不是让原照片做主导,文中引入了一个variance metircs。

在这里插入图片描述
另外,cost volume 正则 (cost volume regularization)就是使用一个U形结构来将重新处理cost volume。因为原生的cost volume 可能会出现光照偏差啊,深度重合等噪音问题,为了去除这些噪音,所以选择了U形的结构来处理。这样可以保证之后深度输出的时候也不会输出过于异常值。

深度的预估

这里文章是使用的一个深度期望来表示的深度概率,然而不是简单的使用概率最大的深度作为点的深度。
在这里插入图片描述
除此之外,文中还结合了 reference 照片去优化depth map 目的是解决因为大感受野和正则出现的结果过于平滑的问题。 最好将initial 和 refined 的depth 都和GT比较做loss。
在这里插入图片描述

相关文章:

MVS net笔记和理解

文章目录 传统的方法有什么缺陷吗?MVSnet深度的预估 传统的方法有什么缺陷吗? 传统的mvs算法它对图像的光照要求相对较高,但是在实际中要保证照片的光照效果很好是很难的。所以传统算法对镜面反射,白墙这种的重建效果就比较差。 …...

Linux 编译屏障之 ACCESS_ONCE()

文章目录 1. 前言2. 背景3. 为什么要有 ACCESS_ONCE() ?4. ACCESS_ONCE() 代码实现5. ACCESS_ONCE() 实例分析6. ACCESS() 的演进7. 结语8. 参考资料 1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做…...

Discuz!X3.4论坛网站公安备案号怎样放到网站底部?

Discuz!网站的工信部备案号都知道在后台——全局——站点信息——网站备案信息代码填写,那公安备案号要添加在哪里呢?并没有看到公安备案号填写栏,今天驰网飞飞和你分享 1)工信部备案号和公安备案号统一填写到网站备案…...

LPDDR6带宽预计将翻倍增长:应对低功耗挑战与AI时代能源需求激增

在当前科技发展的背景下,低能耗问题成为了业界关注的焦点。国际能源署(IEA)近期报告显示,日常的数字活动对电力消耗产生显著影响——每次Google搜索平均消耗0.3瓦时(Wh),而向OpenAI的ChatGPT提出的每一次请求则消耗2.9…...

云原生架构内涵_3.主要架构模式

云原生架构有非常多的架构模式,这里列举一些对应用收益更大的主要架构模式,如服务化架构模式、Mesh化架构模式、Serverless模式、存储计算分离模式、分布式事务模式、可观测架构、事件驱动架构等。 1.服务化架构模式 服务化架构是云时代构建云原生应用的…...

宏基因组分析流程(Metagenomic workflow)202405|持续更新

Logs 增加R包pctax内的一些帮助上游分析的小脚本(2024.03.03)增加Mmseqs2用于去冗余,基因聚类的速度非常快,且随序列量线性增长(2024.03.12)更新全文细节(2024.05.29) 注意&#x…...

一千题,No.0037(组个最小数)

给定数字 0-9 各若干个。你可以以任意顺序排列这些数字,但必须全部使用。目标是使得最后得到的数尽可能小(注意 0 不能做首位)。例如:给定两个 0,两个 1,三个 5,一个 8,我们得到的最…...

PV PVC

默写 1 如何将pod创建在指定的Node节点上 node亲和、pod亲和、pod反亲和: 调度策略 匹配标签 操作符 nodeAffinity 主机 In,NotIn,Exists,DoesNotExist,Gt,Lt podAffinity …...

深入理解Nginx配置文件:全面指南

Nginx 是一个高性能的 HTTP 服务器和反向代理服务器,也是一个电子邮件(IMAP/POP3)代理服务器。由于其高效性和灵活性,Nginx 被广泛应用于各种 web 服务中。本文将详细介绍 Nginx 配置文件的结构和主要配置项,帮助你深入…...

【传知代码】自监督高效图像去噪(论文复现)

前言:在数字化时代,图像已成为我们生活、工作和学习的重要组成部分。然而,随着图像获取方式的多样化,图像质量问题也逐渐凸显出来。噪声,作为影响图像质量的关键因素之一,不仅会降低图像的视觉效果&#xf…...

linnux上安装php zip(ZipArchive)、libzip扩展

安装顺序: 安装zip(ZipArchive),需要先安装libzip扩展 安装libzip,需要先安装cmake 按照cmake、libzip、zip的先后顺序安装 下面的命令都是Linux命令 1、安装cmake 确认是否已安装 cmake --version cmake官网 未安装…...

油封制品中各种橡胶材料的差异

在机械系统中,油封起着关键的作用,其主要功能是防止润滑剂泄漏和污染物进入。油封的性能很大程度上取决于所用的橡胶材料。不同的橡胶化合物各有其独特的特性、优点和应用场景。本文将详细探讨油封制品中各种橡胶材料的差异,重点分析其特性、…...

梳理清楚的echarts地图下钻和标点信息组件

效果图 说明 默认数据没有就是全国地图, $bus.off("onresize")是地图容器变化刷新地图适配的,可以你们自己写 getEchartsFontSize是适配字体大小的,getEchartsFontSize(0.12) 12 mapScatter是base64图片就是图上那个标点的底图 Ge…...

【busybox记录】【shell指令】readlink

目录 内容来源: 【GUN】【readlink】指令介绍 【busybox】【readlink】指令介绍 【linux】【readlink】指令介绍 使用示例: 打印符号链接或规范文件名的值 - 默认输出 打印符号链接或规范文件名的值 - 打印规范文件的全路径 打印符号链接或规范文…...

C++之vector

1、标准库的vector类型 2、vector对象的初始化 3、vector常用成员函数 #include <vector> #include <algorithm> #include <iostream> using namespace std;typedef vector<int> INTVEC;// 普通方法 //void showVec(const INTVEC& vec) // 这边如…...

【简单介绍下idm有那些优势】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

MyBatis系统学习 - 使用Mybatis完成查询单条,多条数据,模糊查询,动态设置表名,获取自增主键

上篇博客我们围绕Mybatis链接数据库进行了相关概述&#xff0c;并对Mybatis的配置文件进行详细的描述&#xff0c;本篇博客也是建立在上篇博客之上进行的&#xff0c;在上面博客搭建的框架基础上&#xff0c;我们对MyBatis实现简单的增删改查操作进行重点概述&#xff0c;在MyB…...

Generative Action Description Prompts for Skeleton-based Action Recognition

标题&#xff1a;基于骨架的动作识别的生成动作描述提示 源文链接&#xff1a;https://openaccess.thecvf.com/content/ICCV2023/papers/Xiang_Generative_Action_Description_Prompts_for_Skeleton-based_Action_Recognition_ICCV_2023_paper.pdfhttps://openaccess.thecvf.c…...

动手学深度学习(Pytorch版)代码实践 -深度学习基础-02线性回归基础版

02线性回归基础版 主要内容 数据生成&#xff1a;使用线性模型 ( y X*w b ) 加上噪声生成人造数据集。数据读取&#xff1a;通过小批量读取数据集来实现批量梯度下降&#xff0c;打乱数据顺序并逐批返回特征和标签。模型参数初始化&#xff1a;随机初始化权重和偏置&#x…...

信息学奥赛初赛天天练-15-阅读程序-深入解析二进制原码、反码、补码,位运算技巧,以及lowbit的神奇应用

更多资源请关注纽扣编程微信公众号 1 2021 CSP-J 阅读程序1 阅读程序&#xff08;程序输入不超过数组或字符串定义的范围&#xff1b;判断题正确填 √&#xff0c;错误填&#xff1b;除特 殊说明外&#xff0c;判断题 1.5 分&#xff0c;选择题 3 分&#xff09; 源码 #in…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...