使用python求PLS-DA的方差贡献率
以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。
效果图

完整代码
# 导入所需库
import numpy as np
from sklearn.cross_decomposition import PLSRegression
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt# 载入数据
iris = load_iris()
X = iris.data
y = iris.target
print(X.shape)
print(y.shape)
# 标准化数据
X = StandardScaler().fit_transform(X)# 定义PLS-DA对象并拟合数据
plsda = PLSRegression(n_components=2)
plsda.fit(X, y)# 得到PLS-DA降维后的数据
X_plsda = plsda.transform(X)
print(X_plsda.shape)
# 绘制散点图
colors = ['blue', 'red', 'green']
labels = ['Setosa', 'Versicolor', 'Virginica']
for i in range(len(colors)):x = X_plsda[:, 0][y == i]y_plot = X_plsda[:, 1][y == i]plt.scatter(x, y_plot, c=colors[i], label=labels[i])# 输出成分贡献率
# 计算PLS-DA成分贡献率# 计算PLSDA的旋转系数
plsda_components = plsda.x_rotations_
print(plsda_components)
plsda_scores = X_plsda
# 计算PLSDA成分解释的方差比例
variance_explained = np.var(plsda_scores, axis=0) # 计算在PLSDA成分上解释的方差
print("variance_explained shape:", variance_explained.shape)
print("variance_explained:", variance_explained)
total_variance = np.var(X, axis=0) # 计算在原始数据上总方差的和
print("total_variance shape:", total_variance.shape)
print("total_variance:", total_variance)
plsda_variance_ratio = variance_explained / total_variance.sum()
print("total_variance.sum():", total_variance.sum()) # 计算PLSDA成分解释的方差比例
# print(plsda_variance_ratio)
# 输出成分贡献率
for i, ratio in enumerate(plsda_variance_ratio):print(f'PLS-DA Component {i + 1}: {ratio * 100:.2f}%')plt.xlabel('LV1 ({} %)'.format(round(plsda_variance_ratio[0] * 100, 2)))
plt.ylabel('LV2 ({} %)'.format(round(plsda_variance_ratio[1] * 100, 2)))plt.legend()
plt.show()
代码解析
主要解析求成分贡献率的过程:
plsda_components = plsda.x_rotations_
plsda_scores = X_plsda
variance_explained = np.var(plsda_scores, axis=0)
total_variance = np.var(X, axis=0)
plsda_variance_ratio = variance_explained / total_variance.sum()
plsda.x_rotations_:plsda是进行PLS-DA的对象,plsda.x_rotations_是PLS-DA模型中X变量(即自变量)的旋转矩阵,表示如何将原始数据X映射到新的降维空间中。将该旋转矩阵存储到变量plsda_components中。对于此数据集,得到的plsda_components是4x2的矩阵。
X_plsda:这是使用PLS-DA降维后的X变量数据集,是150×2的矩阵。
variance_explained = np.var(plsda_scores, axis=0):计算每个主成分(即降维后的新变量)在降维后数据中的方差解释比例,存储到变量variance_explained中。这里使用np.var()函数计算方差。由于本次代码是使用PLS-DA将数据降到2维,故得到的variance_explained是一个包含2个元素的一维数组[2.89312513 0.15504989],表示每个特征的方差之和。
total_variance = np.var(X, axis=0):计算原始数据X中每个变量的总方差,存储到变量total_variance中。原始数据是150×4的矩阵,故total_variance是一个包含4个元素的一维数组,[1. 1. 1. 1.]。
plsda_variance_ratio = variance_explained / total_variance.sum():计算每个主成分在总方差中的方差解释比例,即PLS-DA的方差解释比例。将结果存储到变量plsda_variance_ratio中。total_variance.sum()是求总方差的和,即每个变量的方差之和。这里total_variance.sum()等于3.9999999999999987而不是4,是由于浮点数的存储方式,在某些情况下,计算机无法精确表示某些小数。所以此计算步骤为[2.89312513/3.9999999999999987, 0.15504989/3.9999999999999987]得到[0.72328128 0.03876247],也就是每个主成分在总方差中的方差解释比例。
相关文章:
使用python求PLS-DA的方差贡献率
以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。 效果图 完整代码 # 导入所需库 import numpy as np from sklearn.cross_decomposition import PLSRegression from sklearn.datasets import load_iris from sklearn.pre…...
前端面试题--JavaScript篇
一、JavaScript中的数据类型JavaScript中共有八种数据类型:Number、String、Boolean、Object、Null、Undefined、null、Symbol、BigInt 其中Symbol和BigInt是ES6新增的数据类型Symbol代表独一无二且不可改变的数据类型,主要为了解决可能出现的全局变量冲…...
【批处理脚本】-3.5-pause暂停命令详解
"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有pause的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...
软件测试11
一 Linux命令的基本格式 格式组成:命令主体 -命令选项 命令参数 常见命令形式: (1)命令主体 (2)命令主体 -命令选项 (3)命令主体 参数 (4)命令主体 -命令选项…...
2023 面试题js、es6篇
什么是闭包? 闭包的定义 闭包是指能够访问另一个函数作用域中的变量的一个函数。 在js中,只有函数内部的子函数才能访问局部变量, 所以闭包可以理解成 “定义在一个函数内部的函数”。 应用场景 将内部的函数返到外部去,让外部…...
(六十六)设计索引的时候,我们一般要考虑哪些因素呢?(下)
今天我们最后来讲一下设计索引的时候,我们一般要考虑哪些因素。 另外还讲了字段基数的问题以及前缀索引的问题, 那么今天接着来讲剩下的一些索引设计的原则。 首先假设你设计好了一个索引,非常棒,接着你在SQL里这么写ÿ…...
python程序设计基础 实验四
⭐python实验专栏,欢迎订阅与关注! ★观前提示:本篇内容为python程序设计实验,代码内容经测试没有问题,但是可能会不符合每个人实验的要求,因此以下内容建议仅做思路参考。 一、实验目的 (1&am…...
ASP.NET CORE API 使用Orleans
快速使用Monimal API 快速集成Orleans 微软官网地址如下:https://learn.microsoft.com/zh-cn/dotnet/orleans/quickstarts/build-your-first-orleans-app?sourcerecommendations&tabsvisual-studio当然它的存储grain存储采用的是内存级别存储,我缓存…...
《论文阅读》软化标签(将one-hot编码转变为grayscale标签)
《论文阅读》The Emotion is Not One-hot Encoding: Learning with Grayscale Label for Emotion Recognition in Conversation 前言简介相关知识grayscale label模型方法CategoryWord-EmbeddingSelfSelf-AdjustFuture-Self损失实验结果前言 你是否也对于理解论文存在困惑? …...
keras图片数字识别入门AI机器学习
通过使用mnist(AI界的helloworld)手写数字模型训练集,了解下AI工作的基本流程。 本例子,要基于mnist数据集(该数据集包含了【0-9】的模型训练数据集和测试数据集)来完成一个手写数字识别的小demo。 mnist…...
使用qt编写一个程序,伪造一个ip访问一个网站。
你好,这是Bing。😊 根据网络搜索结果,使用qt编写一个程序,伪造一个ip访问一个网站的方法可能有以下几种: - 使用X-Forwarded-For请求头来伪造客户端的真实ip地址。这种方法需要在发送请求时添加X-Forwarded-For: 伪造…...
探访人工智能领跑者:纷享销客携手30+TOP高科技企业走进旷视科技
拥有全球规模领先的计算机视觉研究院; 揽获28项世界顶级AI竞赛冠军; 世界级人工智能公司; 没错,它就是人工智能行业的务实者和领跑者,旷视科技。 3月3日,北京软件和信息服务业协会联合纷享销客,…...
UTC、TimeZone、TimeStamp
UTC :Universal Time Coordinated,世界协调时,又称世界标准时间。与UTC time对应的是各个时区的local time,东N区的时间比UTC时间早N个小时,因此UTC time N小时 即为东N区的本地时间;而西N区时间比UTC时间…...
探究SMC局部代码加密技术以及在CTF中的运用
前言 近些日子在很多线上比赛中都遇到了smc文件加密技术,比较出名的有Hgame杭电的比赛,于是我准备实现一下这项技术,但是在网上看了很多文章,发现没有讲的特别详细的,或者是无法根据他们的方法进行实现这项技术,因此本篇文章就是…...
免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发人工智能企业
免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发。箱信息识别及铅封号识别功能免费,顶尖AI集装箱识别率99.98%,全球No.1集装箱人工智能企业CIMCAI打造。中国上海人工智能…...
pdf多页合并为一页方法总结,你觉得哪个最好?
PDF格式的文件在现代办公中是不可或缺的,许多人在工作中需要频繁处理PDF文档。然而,当我们需要阅读多个PDF文件时,不断切换不同的文件并一个一个地打开查阅会非常麻烦。为了提高阅读效率,人们一般会将pdf多页合并为一页。那么&…...
每日一读【基金/股票投资的常识和纪律】
个人投资的几点总结,我时常拿来阅读,警示自己: *基于常识,独立思考。 *投资以年为单位,5年一周期。 *下跌时的信心比金子还贵,永远要记住:风险是涨上去的,机会…...
阶段二12_面向对象高级_继承3
知识点内容: 抽象类 模板设计模式 final关键字 一.抽象类 (1)抽象类概述 抽象方法:将共性的行为(方法)抽取到父类之后,发现该方法的实现逻辑 无法在父类中给出具体明确,该方法就可以定义为抽象方法。 抽…...
C++ STL:string类的概述及常用接口说明
目录 一. 什么是STL 二. string类的概述 三. string类的常用接口说明 3.1 字符串对象创建相关接口(构造函数) 3.2 字符串长度和容量相关接口 3.3 字符访问相关接口函数 3.4 字符串删改相关接口函数 3.5 字符查找和子串相关接口函数 3.6 迭代器相…...
java Math类 和 System类 详解(通俗易懂)
Math类介绍Math类常用方法及演示System类简介System类常用方法及演示一、前言本节内容是我们《API-常用类》专题的第四小节了。本节内容主要讲Math类和System类, 内容包括Math类介绍、Math类常用方法、System类介绍,System类常用方法。该小节内容基本不涉…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
