当前位置: 首页 > news >正文

使用python求PLS-DA的方差贡献率

以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。

效果图

完整代码

# 导入所需库
import numpy as np
from sklearn.cross_decomposition import PLSRegression
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt# 载入数据
iris = load_iris()
X = iris.data
y = iris.target
print(X.shape)
print(y.shape)
# 标准化数据
X = StandardScaler().fit_transform(X)# 定义PLS-DA对象并拟合数据
plsda = PLSRegression(n_components=2)
plsda.fit(X, y)# 得到PLS-DA降维后的数据
X_plsda = plsda.transform(X)
print(X_plsda.shape)
# 绘制散点图
colors = ['blue', 'red', 'green']
labels = ['Setosa', 'Versicolor', 'Virginica']
for i in range(len(colors)):x = X_plsda[:, 0][y == i]y_plot = X_plsda[:, 1][y == i]plt.scatter(x, y_plot, c=colors[i], label=labels[i])# 输出成分贡献率
# 计算PLS-DA成分贡献率# 计算PLSDA的旋转系数
plsda_components = plsda.x_rotations_
print(plsda_components)
plsda_scores = X_plsda
# 计算PLSDA成分解释的方差比例
variance_explained = np.var(plsda_scores, axis=0)   # 计算在PLSDA成分上解释的方差
print("variance_explained shape:", variance_explained.shape)
print("variance_explained:", variance_explained)
total_variance = np.var(X, axis=0)                 # 计算在原始数据上总方差的和
print("total_variance shape:", total_variance.shape)
print("total_variance:", total_variance)
plsda_variance_ratio = variance_explained / total_variance.sum()
print("total_variance.sum():", total_variance.sum())   # 计算PLSDA成分解释的方差比例
# print(plsda_variance_ratio)
# 输出成分贡献率
for i, ratio in enumerate(plsda_variance_ratio):print(f'PLS-DA Component {i + 1}: {ratio * 100:.2f}%')plt.xlabel('LV1 ({} %)'.format(round(plsda_variance_ratio[0] * 100, 2)))
plt.ylabel('LV2 ({} %)'.format(round(plsda_variance_ratio[1] * 100, 2)))plt.legend()
plt.show()

 代码解析

主要解析求成分贡献率的过程:

plsda_components = plsda.x_rotations_
plsda_scores = X_plsda
variance_explained = np.var(plsda_scores, axis=0)
total_variance = np.var(X, axis=0)
plsda_variance_ratio = variance_explained / total_variance.sum()
  1. plsda.x_rotations_plsda是进行PLS-DA的对象,plsda.x_rotations_是PLS-DA模型中X变量(即自变量)的旋转矩阵,表示如何将原始数据X映射到新的降维空间中。将该旋转矩阵存储到变量plsda_components中。对于此数据集,得到的plsda_components是4x2的矩阵。

  2. X_plsda:这是使用PLS-DA降维后的X变量数据集,是150×2的矩阵。

  3. variance_explained = np.var(plsda_scores, axis=0):计算每个主成分(即降维后的新变量)在降维后数据中的方差解释比例,存储到变量variance_explained中。这里使用np.var()函数计算方差。由于本次代码是使用PLS-DA将数据降到2维,故得到的variance_explained是一个包含2个元素的一维数组[2.89312513 0.15504989],表示每个特征的方差之和

  4. total_variance = np.var(X, axis=0):计算原始数据X中每个变量的总方差,存储到变量total_variance中。原始数据是150×4的矩阵,故total_variance是一个包含4个元素的一维数组,[1. 1. 1. 1.]。

  5. plsda_variance_ratio = variance_explained / total_variance.sum():计算每个主成分在总方差中的方差解释比例,即PLS-DA的方差解释比例。将结果存储到变量plsda_variance_ratio中。total_variance.sum()是求总方差的和,即每个变量的方差之和。这里total_variance.sum()等于3.9999999999999987而不是4,是由于浮点数的存储方式,在某些情况下,计算机无法精确表示某些小数。所以此计算步骤为[2.89312513/3.9999999999999987, 0.15504989/3.9999999999999987]得到[0.72328128 0.03876247],也就是每个主成分在总方差中的方差解释比例。

相关文章:

使用python求PLS-DA的方差贡献率

以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。 效果图 完整代码 # 导入所需库 import numpy as np from sklearn.cross_decomposition import PLSRegression from sklearn.datasets import load_iris from sklearn.pre…...

前端面试题--JavaScript篇

一、JavaScript中的数据类型JavaScript中共有八种数据类型:Number、String、Boolean、Object、Null、Undefined、null、Symbol、BigInt 其中Symbol和BigInt是ES6新增的数据类型Symbol代表独一无二且不可改变的数据类型,主要为了解决可能出现的全局变量冲…...

【批处理脚本】-3.5-pause暂停命令详解

"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有pause的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...

软件测试11

一 Linux命令的基本格式 格式组成&#xff1a;命令主体 -命令选项 命令参数 常见命令形式&#xff1a; &#xff08;1&#xff09;命令主体 &#xff08;2&#xff09;命令主体 -命令选项 &#xff08;3&#xff09;命令主体 参数 &#xff08;4&#xff09;命令主体 -命令选项…...

2023 面试题js、es6篇

什么是闭包&#xff1f; 闭包的定义 闭包是指能够访问另一个函数作用域中的变量的一个函数。 在js中&#xff0c;只有函数内部的子函数才能访问局部变量&#xff0c; 所以闭包可以理解成 “定义在一个函数内部的函数”。 应用场景 将内部的函数返到外部去&#xff0c;让外部…...

(六十六)设计索引的时候,我们一般要考虑哪些因素呢?(下)

今天我们最后来讲一下设计索引的时候&#xff0c;我们一般要考虑哪些因素。 另外还讲了字段基数的问题以及前缀索引的问题&#xff0c; 那么今天接着来讲剩下的一些索引设计的原则。 首先假设你设计好了一个索引&#xff0c;非常棒&#xff0c;接着你在SQL里这么写&#xff…...

python程序设计基础 实验四

⭐python实验专栏&#xff0c;欢迎订阅与关注&#xff01; ★观前提示&#xff1a;本篇内容为python程序设计实验&#xff0c;代码内容经测试没有问题&#xff0c;但是可能会不符合每个人实验的要求&#xff0c;因此以下内容建议仅做思路参考。 一、实验目的 &#xff08;1&am…...

ASP.NET CORE API 使用Orleans

快速使用Monimal API 快速集成Orleans 微软官网地址如下&#xff1a;https://learn.microsoft.com/zh-cn/dotnet/orleans/quickstarts/build-your-first-orleans-app?sourcerecommendations&tabsvisual-studio当然它的存储grain存储采用的是内存级别存储&#xff0c;我缓存…...

《论文阅读》软化标签(将one-hot编码转变为grayscale标签)

《论文阅读》The Emotion is Not One-hot Encoding: Learning with Grayscale Label for Emotion Recognition in Conversation 前言简介相关知识grayscale label模型方法CategoryWord-EmbeddingSelfSelf-AdjustFuture-Self损失实验结果前言 你是否也对于理解论文存在困惑? …...

keras图片数字识别入门AI机器学习

通过使用mnist&#xff08;AI界的helloworld&#xff09;手写数字模型训练集&#xff0c;了解下AI工作的基本流程。 本例子&#xff0c;要基于mnist数据集&#xff08;该数据集包含了【0-9】的模型训练数据集和测试数据集&#xff09;来完成一个手写数字识别的小demo。 mnist…...

使用qt编写一个程序,伪造一个ip访问一个网站。

你好&#xff0c;这是Bing。&#x1f60a; 根据网络搜索结果&#xff0c;使用qt编写一个程序&#xff0c;伪造一个ip访问一个网站的方法可能有以下几种&#xff1a; - 使用X-Forwarded-For请求头来伪造客户端的真实ip地址。这种方法需要在发送请求时添加X-Forwarded-For: 伪造…...

探访人工智能领跑者:纷享销客携手30+TOP高科技企业走进旷视科技

拥有全球规模领先的计算机视觉研究院&#xff1b; 揽获28项世界顶级AI竞赛冠军&#xff1b; 世界级人工智能公司&#xff1b; 没错&#xff0c;它就是人工智能行业的务实者和领跑者&#xff0c;旷视科技。 3月3日&#xff0c;北京软件和信息服务业协会联合纷享销客&#xff0c;…...

UTC、TimeZone、TimeStamp

UTC &#xff1a;Universal Time Coordinated&#xff0c;世界协调时&#xff0c;又称世界标准时间。与UTC time对应的是各个时区的local time&#xff0c;东N区的时间比UTC时间早N个小时&#xff0c;因此UTC time N小时 即为东N区的本地时间&#xff1b;而西N区时间比UTC时间…...

探究SMC局部代码加密技术以及在CTF中的运用

前言 近些日子在很多线上比赛中都遇到了smc文件加密技术,比较出名的有Hgame杭电的比赛,于是我准备实现一下这项技术&#xff0c;但是在网上看了很多文章&#xff0c;发现没有讲的特别详细的&#xff0c;或者是无法根据他们的方法进行实现这项技术&#xff0c;因此本篇文章就是…...

免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发人工智能企业

免费集装箱箱号识别API&#xff0c;人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户&#xff0c;支持API集成二次开发。箱信息识别及铅封号识别功能免费&#xff0c;顶尖AI集装箱识别率99.98%&#xff0c;全球No.1集装箱人工智能企业CIMCAI打造。中国上海人工智能…...

pdf多页合并为一页方法总结,你觉得哪个最好?

PDF格式的文件在现代办公中是不可或缺的&#xff0c;许多人在工作中需要频繁处理PDF文档。然而&#xff0c;当我们需要阅读多个PDF文件时&#xff0c;不断切换不同的文件并一个一个地打开查阅会非常麻烦。为了提高阅读效率&#xff0c;人们一般会将pdf多页合并为一页。那么&…...

每日一读【基金/股票投资的常识和纪律】

个人投资的几点总结&#xff0c;我时常拿来阅读&#xff0c;警示自己: &#xff0a;基于常识&#xff0c;独立思考。 &#xff0a;投资以年为单位&#xff0c;5年一周期。 &#xff0a;下跌时的信心比金子还贵&#xff0c;永远要记住&#xff1a;风险是涨上去的&#xff0c;机会…...

阶段二12_面向对象高级_继承3

知识点内容&#xff1a; 抽象类 模板设计模式 final关键字 一.抽象类 (1)抽象类概述 抽象方法&#xff1a;将共性的行为&#xff08;方法&#xff09;抽取到父类之后&#xff0c;发现该方法的实现逻辑 无法在父类中给出具体明确&#xff0c;该方法就可以定义为抽象方法。 抽…...

C++ STL:string类的概述及常用接口说明

目录 一. 什么是STL 二. string类的概述 三. string类的常用接口说明 3.1 字符串对象创建相关接口&#xff08;构造函数&#xff09; 3.2 字符串长度和容量相关接口 3.3 字符访问相关接口函数 3.4 字符串删改相关接口函数 3.5 字符查找和子串相关接口函数 3.6 迭代器相…...

java Math类 和 System类 详解(通俗易懂)

Math类介绍Math类常用方法及演示System类简介System类常用方法及演示一、前言本节内容是我们《API-常用类》专题的第四小节了。本节内容主要讲Math类和System类&#xff0c; 内容包括Math类介绍、Math类常用方法、System类介绍&#xff0c;System类常用方法。该小节内容基本不涉…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...