rnn 和lstm源码学习笔记
目录
rnn学习笔记
lstm学习笔记
rnn学习笔记
import torchdef rnn(inputs, state, params):# inputs的形状: (时间步数量, 批次大小, 词表大小)W_xh, W_hh, b_h, W_hq, b_q = paramsH = stateoutputs = []# 遍历每个时间步for X in inputs:# 计算隐藏状态 HH = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)# 计算输出 YY = torch.mm(H, W_hq) + b_qoutputs.append(Y)# 返回输出和新的隐藏状态return torch.cat(outputs, dim=0), (H,)# 参数示例初始化(根据实际情况调整)
input_size = 10 # 词表大小
hidden_size = 20 # 隐藏层大小
output_size = 5 # 输出大小# 初始化参数
W_xh = torch.randn(input_size, hidden_size)
W_hh = torch.randn(hidden_size, hidden_size)
b_h = torch.randn(hidden_size)
W_hq = torch.randn(hidden_size, output_size)
b_q = torch.randn(output_size)params = (W_xh, W_hh, b_h, W_hq, b_q)
state = (torch.zeros(4,hidden_size))# 输入示例
time_steps = 3
batch_size = 4
inputs = torch.randn(time_steps, batch_size, input_size)# 调用RNN函数
outputs, new_state = rnn(inputs, state, params)
print(outputs)
print(new_state)
lstm学习笔记
import torch
import torch.nn as nndef lstm(inputs, state, params):# inputs的形状: (时间步数量, 批次大小, 词表大小)W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q = params(H, C) = stateoutputs = []# 遍历每个时间步for X in inputs:I = torch.sigmoid(torch.mm(X, W_xi) + torch.mm(H, W_hi) + b_i)F = torch.sigmoid(torch.mm(X, W_xf) + torch.mm(H, W_hf) + b_f)O = torch.sigmoid(torch.mm(X, W_xo) + torch.mm(H, W_ho) + b_o)C_tilda = torch.tanh(torch.mm(X, W_xc) + torch.mm(H, W_hc) + b_c)C = F * C + I * C_tildaH = O * torch.tanh(C)Y = torch.mm(H, W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H, C)# 参数示例初始化(根据实际情况调整)
input_size = 10 # 词表大小
hidden_size = 20 # 隐藏层大小
output_size = 5 # 输出大小# 初始化参数
W_xi = torch.randn(input_size, hidden_size)
W_hi = torch.randn(hidden_size, hidden_size)
b_i = torch.zeros(hidden_size)
W_xf = torch.randn(input_size, hidden_size)
W_hf = torch.randn(hidden_size, hidden_size)
b_f = torch.zeros(hidden_size)
W_xo = torch.randn(input_size, hidden_size)
W_ho = torch.randn(hidden_size, hidden_size)
b_o = torch.zeros(hidden_size)
W_xc = torch.randn(input_size, hidden_size)
W_hc = torch.randn(hidden_size, hidden_size)
b_c = torch.zeros(hidden_size)
W_hq = torch.randn(hidden_size, output_size)
b_q = torch.zeros(output_size)# 输入示例
time_steps = 3
batch_size = 4
inputs = torch.randn(time_steps, batch_size, input_size)params = (W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q)
state = (torch.zeros(batch_size, hidden_size), torch.zeros(batch_size, hidden_size)) # 初始隐藏状态和单元状态# 调用LSTM函数
outputs, new_state = lstm(inputs, state, params)
print(outputs)
print(new_state)
相关文章:
rnn 和lstm源码学习笔记
目录 rnn学习笔记 lstm学习笔记 rnn学习笔记 import torchdef rnn(inputs, state, params):# inputs的形状: (时间步数量, 批次大小, 词表大小)W_xh, W_hh, b_h, W_hq, b_q paramsH stateoutputs []# 遍历每个时间步for X in inputs:# 计算隐藏状态 HH torch.tanh(torch.…...
解析Java中1000个常用类:CharSequence类,你学会了吗?
在 Java 编程中,字符串操作是最常见的任务之一。为了提供一种灵活且统一的方式来处理不同类型的字符序列,Java 引入了 CharSequence 接口。 通过实现 CharSequence 接口,各种字符序列类可以提供一致的 API,增强了代码的灵活性和可扩展性。 本文将深入探讨 CharSequence 接…...
微服务远程调用之拦截器实战
微服务远程调用之拦截器实战 前言: 在我们开发过程中,很可能是项目是从0到1开发,或者在原有基础上做二次开发,这次是根据已有代码做二次开发,需要在我们微服务一【这里方便举例,我们后面叫模版微服务】调用…...
德人合科技——天锐绿盾内网安全管理软件 | -文档透明加密模块
天锐绿盾文档加密功能能够为各种模式的电子文档提供高强度加密保护,丰富的权限控制以及灵活的应用管理,帮助企业构建更严密的立体保密体系。 PC地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee ————…...
超融合架构下,虚拟机高可用机制如何构建?
作者:SmartX 产品部 钟锦锌 虚拟机高可用(High Availability,简称 HA)是虚拟化/超融合平台最常用、关键的功能之一,可在服务器发生故障时通过重建业务虚拟机以降低故障对业务带来的影响。因此,为了充分保障…...
工厂模式详情
一.介绍工厂模式的用途与特点 工厂方法模式是一种创建型设计模式, 其在父类中提供一个创建对象的方法, 允许子类决定实例化对象的类型。定义工厂方法模式(Fatory Method Pattern)是指定义一个创建对象的接口,但让实现这个接口的类来决定实例…...
【Word】调整列表符号与后续文本的间距
1. 默认的列表格式: 2. 修改间距: ************************************************** 分割线 ************************************************************ 3. 效果...
匠心独运,B 端系统 UI 演绎华章之美
匠心独运,B 端系统 UI 演绎华章之美...
Java电商平台-开放API接口签名验证(小程序/APP)
说明:在实际的生鲜业务中,不可避免的需要对外提供api接口给外部进行调用. 这里就有一个接口安全的问题需要沟通了。下面是干货: 接口安全问题 请求身份是否合法? 请求参数是否被篡改? 请求是否唯一? AccessKey&am…...
Tale全局函数对象base
目录 1、 Tale全局函数对象base 1.1、 * tale alert删除 1.2、 * 成功弹框 1.3、 * 弹出成功,并在500毫秒后刷新页面 1.4、 * 警告弹框 1.5、 * 询问确认弹框,这里会传入then函数进来...
【启程Golang之旅】掌握Go语言数组基础概念与实际应用
欢迎来到Golang的世界!在当今快节奏的软件开发领域,选择一种高效、简洁的编程语言至关重要。而在这方面,Golang(又称Go)无疑是一个备受瞩目的选择。在本文中,带领您探索Golang的世界,一步步地了…...
COMSOL中液晶材料光学特性模拟
前面我们根据FDTD官方文档设置了液晶指向的模型。COMSOL也可以根据相似的方法设置各项异性的周期性变化的材料。 该方法参考了luneburg_lens的COMSOL文档 在给出的文件中,可以发现定义-变量中可以使用默认坐标作为变量,即xyz。因此,折射率也可…...
虚拟现实环境下的远程教育和智能评估系统(五)
查阅相关VR眼动注意力联合教育学相关论文 1.Exploring Eye Gaze Visualization Techniques for Identifying Distracted Students in Educational VR(IEEE VR 2020) 摘要:我们提出了一种架构,使VR教学代理能够响应眼动追踪监控…...
【算法】模拟算法——Z字形变换(medium)
题解:模拟算法——Z字形变换(medium) 目录 1.题目2.题解3.参考代码4.总结 1.题目 题目链接:LINK 2.题解 利用模拟,来解决问题。 首先创建出一个O(numRows*n)的数组来,并按照题目要求把每个字符按顺序填进去。 这里以numRows…...
上位机图像处理和嵌入式模块部署(f103 mcu获取唯一id)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 对于stm32f103系列mcu来说,一般每一颗原厂的mcu,都会对应一个唯一的id。那这个id可以用来做什么用呢?个人认为&…...
运筹学_3.运输问题(特殊的线性规划)
目录 前言3.1 平衡运输问题中初始基可行解确定运输问题平衡运输与非平衡运输平衡运输问题的数学模型单纯形法解决平衡运输问题,初始可行基的确认 3.2 平衡运输问题的最优解判别求检验数表上作业法 3.3 产销不平衡的运输问题运输问题中产大于销的问题运输问题中产小于…...
科研项目书写作学习(持续更新中...)
写好一个科研项目书也是科研中很重要的一部分,所以借这篇博客做一个积累。还是以模块化的方式吧,后面慢慢那再整合逻辑。可能写的也不是很好,慢慢提升吧~ 背景 科研项目书的背景怎么写?首先要突出问题的价值(也就是做此研究的动…...
男士内裤哪个品牌好一点?2024热门男士内裤推荐
男人的内裤保质期只取决于被别人看见的次数,如果某条内裤从未被别人看见过,那它永远都是你的新内裤。也就是说,只要穿着破内裤这尴尬的瞬间没被目击,男人就能永远和一条内裤在一起。 实际上如果长时间不更换男士内裤,…...
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战
LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (一) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (二) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (三) 基于 LlaMA…...
计算机tcp/ip网络通信过程
目录 (1)同一网段两台计算机通信过程 (2)不同网段的两台计算机通信过程 (3)目的主机收到数据包后的解包过程 (1)同一网段两台计算机通信过程 如果两台计算机在同一个局域网中的同…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
